暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

06-优化学习-成本计算

原创 ziyoo0830 2019-10-31
699

第6章 成本计算

6.1、优化SQL需要看COST吗

COST是基于统计信息、基于数学公式计算出来的;

6.2、全表扫描成本计算

SCOTT@o11g>create table t_fullscan_cost as select * from dba_objects where 1=0 ; SCOTT@o11g>alter table t_fullscan_cost pctfree 99 pctused 1 ; SCOTT@o11g>insert into t_fullscan_cost select * from dba_objects where rownum <2 ; SCOTT@o11g>alter table t_fullscan_cost minimize records_per_block ; SCOTT@o11g>insert into t_fullscan_cost select * from dba_objects where rownum <1000 ; SCOTT@o11g>begin dbms_stats.gather_table_stats(ownname => 'SCOTT', tabname => 'T_FULLSCAN_COST', estimate_percent => 100, method_opt => 'for all columns size 1', degree => 1, cascade => true); end; SQL> select owner, blocks 2 from dba_tables 3 where owner = 'SCOTT' 4 and table_name = 'T_FULLSCAN_COST'; OWNER BLOCKS ------------------------------ ---------- SCOTT 1000 SCOTT@o11g>alter session set db_file_multiblock_read_count=16; SCOTT@o11g>set autot traceonly SCOTT@o11g>select count(*) from t_fullscan_cost ; Execution Plan ---------------------------------------------------------- Plan hash value: 387824861 ------------------------------------------------------------------------------ | Id | Operation | Name | Rows | Cost (%CPU)| Time | ------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 1 | 220 (0)| 00:00:03 | | 1 | SORT AGGREGATE | | 1 | | | | 2 | TABLE ACCESS FULL| T_FULLSCAN_COST | 1 | 220 (0)| 00:00:03 | ------------------------------------------------------------------------------ Statistics ---------------------------------------------------------- 57 recursive calls 26 db block gets 1024 consistent gets 24 physical reads 0 redo size 526 bytes sent via SQL*Net to client 523 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 4 sorts (memory) 0 sorts (disk) 1 rows processed

执行计划中全表扫描的成本是272;

全表扫描成本的计算方式如下:

Cost = (

#SRds * sreadtim +

#MRds * mreadtim +

CPUCycles / cpuspeed

) / sreadtime

#SRds - number of single block reads 表示单块读次数
#MRds - number of multi block reads  表示多块读次数
#CPUCyles - number of CPU cycles     CPU时钟周期数
sreadtim - single block read time    一次单块读耗时,单位毫秒
mreadtim - multi block read time     一次多块读耗时,单位毫秒
cpuspeed - CPU cycles per second     每秒CPU时钟周期数 
SQL> select pname, pval1 from sys.aux_stats$ where sname = 'SYSSTATS_MAIN';
PNAME                               PVAL1
------------------------------ ----------
CPUSPEEDNW                     3074.07407   -- cpuspeed 
IOSEEKTIM                              10   -- I/O寻道寻址耗时
IOTFRSPEED                           4096   -- I/O传输速度
SREADTIM                          357.434
MREADTIM                       
CPUSPEED                             1540
MBRC                           
MAXTHR                         
SLAVETHR                       
9 rows selected

因为MBRC为NULL,所以CBO采用了非工作量来计算成本;

在全表扫描成本计算公式中,#SRds=0,因为全表扫描一般都是多块读;

#MRds=表的块数/多块读参数=1000/16;

sreadtim=ioseektim + db_block_size/iotfrspeed,单块读耗时=I/O寻道寻址耗时+块大小 / I/O传输速度;

计算单块读耗时: SQL> select (select pval1 from sys.aux_stats$ where pname = 'IOSEEKTIM') + 2 (select value from v$parameter where name = 'db_block_size') / 3 (select pval1 from sys.aux_stats$ where pname = 'IOTFRSPEED') "sreadtim" 4 from dual; sreadtim ---------- 12

mreadtim=ioseektim + db_file_multiblock_count * db_block_size / I/O传输速度;

多块读耗时=I/O寻道寻址耗时+多块读参数*块大小/ I/O传输速度;

select (select pval1 from sys.aux_stats$ where pname = 'IOSEEKTIM') +
       (select value
          from v$parameter
         where name = 'db_file_multiblock_read_count') *
       (select value from v$parameter where name = 'db_block_size') /
       (select pval1 from sys.aux_stats$ where pname = 'IOTFRSPEED') "mreadtim"
      from dual;

  mreadtim
----------
	42

CPUCycles等于PLAN_TABLE/V$SQL_PLAN里面的CPU_COST;

SCOTT@o11g>explain plan for select count(*) from t_fullscan_cost ;

Explained.

SCOTT@o11g>select cpu_cost from plan_table where rownum<=1 ;

  CPU_COST
----------
   7121590

计算全表扫描成本:

SCOTT@o11g>l 1 select (0 * 12 + 1000 / 16 * 42 / 12 + 7121590 / (3074.07407 * 1000) / 12) cost 2* from dual SCOTT@o11g>/ COST ---------- 218.943055 SYS@o11g>l 1 SELECT x.ksppinm NAME, y.ksppstvl VALUE, x.ksppdesc describ 2 FROM x$ksppi x, x$ksppcv y 3 WHERE x.inst_id = USERENV('Instance') 4 AND y.inst_id = USERENV('Instance') 5 AND x.indx = y.indx 6* AND x.ksppinm LIKE '%_table_scan_cost_plus_one%' SYS@o11g>/ NAME VALUE DESCRIB ------------------------- ----- ---------------- _table_scan_cost_plus_one TRUE bump estimated full table scan and index ffs cost by one

6.3、索引范围扫描成本计算

TEST01@testora>create table t_indexscan_cost as select * from dba_objects ; Table created. TEST01@testora>create index idx_cost on t_indexscan_cost(object_id); Index created. 收集统计信息 begin dbms_stats.gather_table_stats(ownname => 'TEST01', tabname => 'T_INDEXSCAN_COST', estimate_percent => 100, method_opt => 'for all columns size 1', degree => 1, cascade => true); end; 查看表总行数、object_id最大值、object_id最小值以及null值; select b.NUM_ROWS, a.num_distinct, a.num_nulls, utl_raw.cast_to_number(high_value) high_value, utl_raw.cast_to_number(low_value) low_value, utl_raw.cast_to_number(high_value) - utl_raw.cast_to_number(low_value) "high_value-low_value" from dba_tab_col_statistics a, dba_tables b where a.owner = b.owner and a.table_name = b.TABLE_NAME and a.table_name = 'T_INDEXSCAN_COST' and a.column_name = 'OBJECT_ID'; 执行计划: TEST01@testora>select owner from t_indexscan_cost where object_id <1000 ; 997 rows selected. Execution Plan ---------------------------------------------------------- Plan hash value: 1756649757 ----------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ----------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 975 | 10725 | 19 (0)| 00:00:01 | | 1 | TABLE ACCESS BY INDEX ROWID| T_INDEXSCAN_COST | 975 | 10725 | 19 (0)| 00:00:01 | |* 2 | INDEX RANGE SCAN | IDX_COST | 975 | | 4 (0)| 00:00:01 | ----------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 2 - access("OBJECT_ID"<1000) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 151 consistent gets 0 physical reads 0 redo size 17697 bytes sent via SQL*Net to client 1245 bytes received via SQL*Net from client 68 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 997 rows processed
索引范围扫描的成本计算公式
cost =  
 blevel +  
 celiling(leaf_blocks *effective index selectivity) +  
 celiling(clustering_factor * effective table selectivity)

获取blevel、leaf_blocks、clustering_factor从如下SQL中获取:

TEST01@testora>select leaf_blocks,blevel,clustering_factor from dba_indexes where owner='TEST01' and index_name='IDX_COST' ;

LEAF_BLOCKS	BLEVEL CLUSTERING_FACTOR
----------- ---------- -----------------
	191	     1		    1323

未完,待续…

6.4、SQL优化核心思想

核心思想:想方设法减少SQL的物理I/O次数(不管是单块读次数还是多块读次数)。

第7章 查询转换

7.1、子查询非嵌套

子查询非嵌套(Subquery Unnesting):当where子查询中有in、not in、exists、not exists等,CBO会尝试将子查询展开(unnest),从而消除FILTER,这个过程就叫作子查询非嵌套。子查询非嵌套的目的就是消除FILTER。

为什么要消除FILTER呢?因为FILTER的驱动表是固定的,一旦驱动表被固定,那么执行计划也就被固定了。对于DBA来说这并不是好事,因为一旦固定的执行计划本身是错误的(低效的),就会引起性能问题,想要提升性能必须改写SQL语句,但是这时SQL已经上线,无法更改,所以,一定要消除FILTER。

样例

TEST01@testora>set lines 200 select ename, deptno from scott.emp where exists (select deptno from scott.dept where dname = 'CHICAGO' and emp.deptno = dept.deptno union select deptno from scott.dept where loc = 'CHICAGO' 11 and dept.deptno = emp.deptno); 6 rows selected. Execution Plan ---------------------------------------------------------- Plan hash value: 2705207488 ----------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ----------------------------------------------------------------------------------------- | 0 | SELECT STATEMENT | | 5 | 45 | 15 (40)| 00:00:01 | |* 1 | FILTER | | | | | | | 2 | TABLE ACCESS FULL | EMP | 14 | 126 | 3 (0)| 00:00:01 | | 3 | SORT UNIQUE | | 2 | 48 | 4 (50)| 00:00:01 | | 4 | UNION-ALL | | | | | | |* 5 | TABLE ACCESS BY INDEX ROWID| DEPT | 1 | 13 | 1 (0)| 00:00:01 | |* 6 | INDEX UNIQUE SCAN | PK_DEPT | 1 | | 0 (0)| 00:00:01 | |* 7 | TABLE ACCESS BY INDEX ROWID| DEPT | 1 | 11 | 1 (0)| 00:00:01 | |* 8 | INDEX UNIQUE SCAN | PK_DEPT | 1 | | 0 (0)| 00:00:01 | ------------------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter( EXISTS ( (SELECT "DEPTNO" FROM "SCOTT"."DEPT" "DEPT" WHERE "DEPT"."DEPTNO"=:B1 AND "DNAME"='CHICAGO')UNION (SELECT "DEPTNO" FROM "SCOTT"."DEPT" "DEPT" WHERE "DEPT"."DEPTNO"=:B2 AND "LOC"='CHICAGO'))) 5 - filter("DNAME"='CHICAGO') 6 - access("DEPT"."DEPTNO"=:B1) 7 - filter("LOC"='CHICAGO') 8 - access("DEPT"."DEPTNO"=:B1) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 19 consistent gets 0 physical reads 0 redo size 714 bytes sent via SQL*Net to client 519 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 3 sorts (memory) 0 sorts (disk) 6 rows processed 改写SQL,消除FILTER:(/*+ no_unnest */ , /*+ unnset */) select ename, deptno from scott.emp where exists (select 1 from (select deptno from scott.dept where dname = 'CHICAGO' union select deptno from scott.dept where loc = 'CHICAGO') a 11 where a.deptno = emp.deptno); 6 rows selected. Execution Plan ---------------------------------------------------------- Plan hash value: 4243948922 ------------------------------------------------------------------------------ | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------ | 0 | SELECT STATEMENT | | 5 | 110 | 11 (19)| 00:00:01 | |* 1 | HASH JOIN SEMI | | 5 | 110 | 11 (19)| 00:00:01 | | 2 | TABLE ACCESS FULL | EMP | 14 | 126 | 3 (0)| 00:00:01 | | 3 | VIEW | | 2 | 26 | 8 (25)| 00:00:01 | | 4 | SORT UNIQUE | | 1 | 24 | 8 (25)| 00:00:01 | | 5 | UNION-ALL | | | | | | |* 6 | TABLE ACCESS FULL| DEPT | 1 | 13 | 3 (0)| 00:00:01 | |* 7 | TABLE ACCESS FULL| DEPT | 1 | 11 | 3 (0)| 00:00:01 | ------------------------------------------------------------------------------ Predicate Information (identified by operation id): --------------------------------------------------- 1 - access("A"."DEPTNO"="EMP"."DEPTNO") 6 - filter("DNAME"='CHICAGO') 7 - filter("LOC"='CHICAGO') Statistics ---------------------------------------------------------- 1 recursive calls 0 db block gets 18 consistent gets 0 physical reads 0 redo size 714 bytes sent via SQL*Net to client 519 bytes received via SQL*Net from client 2 SQL*Net roundtrips to/from client 1 sorts (memory) 0 sorts (disk) 6 rows processed

7.2、视图合并(view merge)

视图合并(View Merge):当SQL语句中有内联视图(in-line view,from后面的子查询),或者SQL语句中有用create view创建的视图,CBO会尝试将内联视图/视图拆开,进行等价的改写,这个过程就叫作视图合并。如果没有发生视图合并,在执行计划中,我们可以看到VIEW关键字,而且视图/子查询会作为一个整体。如果发生了视图合并,那么视图/子查询就会被拆开,而且执行计划中视图/子查询部分就没有VIEW关键字。

*/*+ no_merge /

7.3、谓词推入(pushing predicate)

谓词推入(Pushing Predicate):当SQL语句中包含不能合并的视图,同时视图有谓词过滤(也就是where过滤条件),CBO会将谓词过滤条件推入视图中,这个过程就叫作谓词推入。谓词推入的主要目的就是让Oracle尽可能早地过滤掉无用的数据,从而提升查询性能。

关闭连接谓词推入:
alter session set "_push_join_predicate" = false ;
「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

文章被以下合辑收录

评论

目录
  • 第6章 成本计算
    • 6.1、优化SQL需要看COST吗
    • 6.2、全表扫描成本计算
    • 6.3、索引范围扫描成本计算
      • 索引范围扫描的成本计算公式
    • 6.4、SQL优化核心思想
  • 第7章 查询转换
    • 7.1、子查询非嵌套
      • 样例
    • 7.2、视图合并(view merge)
    • 7.3、谓词推入(pushing predicate)