暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

一文介绍hive与Impala的对比~

大数据老哥 2021-09-28
1654
关注我,回复"大数据",获取精美的大数据资料


Impala简介
Impala是由Cloudera公司开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase上的PB级大数据,在性能上比Hive高出3~30倍。
Impala的运行需要依赖于Hive的元数据。Impala是参照 Dremel系统进行设计的。
Impala采用了与商用并行关系数据库类似的分布式查询引擎,可以直接与HDFS和HBase进行交互查询。
Impala和Hive采用相同的SQL语法、ODBC驱动程序和用户接口。
组件

Impala系统架构


系统架构
图:Impala系统架构图
Impala和Hive、HDFS、HBase等工具是统一部署在一个Hadoop平台上的。Impala主要由Impalad,State Store和CLI三部分组成。
(1)Impalad
  • 负责协调客户端提交的查询的执行
  • 包含Query Planner、Query Coordinator和Query Exec Engine三个模块。
  • 与HDFS的数据节点(HDFS DN)运行在同一节点上。
  • 给其他Impalad分配任务以及收集其他Impalad的执行结果进行汇总。
  • Impalad也会执行其他Impalad给其分配的任务,主要就是对本地HDFS和HBase里的部分数据进行操作。
(2)State Store
  • 会创建一个statestored进程。
  • 负责收集分布在集群中各个Impalad进程的资源信息,用于查询调度。
(3)CLI
  • 给用户提供查询使用的命令行工具。
  • 还提供了Hue、JDBC及ODBC的使用接口。
说明:Impala中的元数据直接存储在Hive中。Impala采用与Hive相同的元数据、SQL语法、ODBC驱动程序和用户接口,从而使得在一个Hadoop平台上,可以统一部署Hive和Impala等分析工具,同时支持批处理和实时查询。

Impala查询执行过程


过程图
Impala执行查询的具体过程:
  1. 第0步,当用户提交查询前,Impala先创建一个负责协调客户端提交的查询的Impalad进程,该进程会向Impala State Store提交注册订阅信息,State Store会创建一个statestored进程,statestored进程通过创建多个线程来处理Impalad的注册订阅信息。
  2. 第1步,用户通过CLI客户端提交一个查询到impalad进程,Impalad的Query Planner对SQL语句进行解析,生成解析树;然后,Planner把这个查询的解析树变成若干PlanFragment,发送到Query Coordinator.
  3. 第2步,Coordinator通过从MySQL元数据库中获取元数据,从HDFS的名称节点中获取数据地址,以得到存储这个查询相关数据的所有数据节点。
  4. 第3步,Coordinator初始化相应impalad上的任务执行,即把查询任务分配给所有存储这个查询相关数据的数据节点。
  5. 第4步,Query Executor通过流式交换中间输出,并由Query Coordinator汇聚来自各个impalad的结果。
  6. 第5步,Coordinator把汇总后的结果返回给CLI客户端。

Impala与Hive的比较


对比
Hive与Impala的不同点总结如下:
  1. Hive适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询。
  2. Hive依赖于MapReduce计算框架,Impala把执行计划表现为一棵完整的执行计划树,直接分发执行计划到各个Impalad执行查询。
  3. Hive在执行过程中,如果内存放不下所有数据,则会使用外存,以保证查询能顺序执行完成,而Impala在遇到内存放不下数据时,不会利用外存,所以Impala目前处理查询时会受到一定的限制。
Hive与Impala的相同点总结如下:
  1. Hive与Impala使用相同的存储数据池,都支持把数据存储于HDFS和HBase中。
  2. Hive与Impala使用相同的元数据。
  3. Hive与Impala中对SQL的解释处理比较相似,都是通过词法分析生成执行计划。
总结:
  • Impala的目的不在于替换现有的MapReduce工具。
  • 把Hive与Impala配合使用效果最佳。
  • 可以先使用Hive进行数据转换处理,之后再使用Impala在Hive处理后的结果数据集上进行快速的数据分析。

END


资源获取 获取Flink面试题,Spark面试题,程序员必备软件,hive面试题,Hadoop面试题,Docker面试题,简历模板等资源请去 GitHub自行下载 https://github.com/lhh2002/Framework-Of-BigData Gitee 自行下载  https://gitee.com/li_hey_hey/dashboard/projects 

大数据老哥
希望这篇文章可以帮到你~
记得点赞收藏哦

一文讲解 Flink 中的时间、窗口和流 Join

2021-09-27

大数据环境下的数仓是如何管理元数据的

2021-09-25

四万字长文 | Spark性能优化实战手册(建议收藏)

2021-09-24

🧐分享点赞在看,给个3连击呗!👇

文章转载自大数据老哥,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论