第 1 章 Explain 查看执行计划
1.1 基本语法
显示语句的执行计划。
EXPLAIN [AST | SYNTAX | PLAN | PIPELINE] [setting = value, ...] SELECT ... [FORMAT ...]
EXPLAIN
SELECT sum(number)
FROM numbers(10)
UNION ALL
SELECT sum(number)
FROM numbers(10)
ORDER BY sum(number) ASC
FORMAT TSV;
Query id: 842a4e53-e9b7-4793-96cc-ae7dde3f11d0
Union
Expression ((Projection + Before ORDER BY))
Aggregating
Expression (Before GROUP BY)
SettingQuotaAndLimits (Set limits and quota after reading from storage)
ReadFromStorage (SystemNumbers)
Expression (Projection)
MergingSorted (Merge sorted streams for ORDER BY)
MergeSorting (Merge sorted blocks for ORDER BY)
PartialSorting (Sort each block for ORDER BY)
Expression (Before ORDER BY)
Aggregating
Expression (Before GROUP BY)
SettingQuotaAndLimits (Set limits and quota after reading from storage)
ReadFromStorage (SystemNumbers)
15 rows in set. Elapsed: 0.005 sec.
1.2 解释类型
AST— 抽象语法树。
SYNTAX — 在 AST 级优化后查询文本。
PLAN— 查询执行计划。
PIPELINE — 查询执行管道。
1.2 AST- 抽象语法树
转储查询 AST。支持所有类型的查询,不仅是SELECT.
EXPLAIN AST SELECT 1;
Query id: 817e0952-e1ad-499f-a7b6-12552b1260d3
┌─explain───────────────────────────┐
│ SelectWithUnionQuery (children 1) │
│ ExpressionList (children 1) │
│ SelectQuery (children 1) │
│ ExpressionList (children 1) │
│ Literal UInt64_1 │
└───────────────────────────────────┘
5 rows in set. Elapsed: 0.006 sec.
EXPLAIN AST ALTER TABLE t1 DELETE WHERE date = today();
Query id: 6c7fb3cf-5acd-4026-b5f8-46c7c420cb09
┌─explain──────────────────────────┐
│ AlterQuery t1 (children 1) │
│ ExpressionList (children 1) │
│ AlterCommand 30 (children 1) │
│ Function equals (children 1) │
│ ExpressionList (children 2) │
│ Identifier date │
│ Function today (children 1) │
│ ExpressionList │
└──────────────────────────────────┘
8 rows in set. Elapsed: 0.005 sec.
1.3 SYNTAX — 在 AST 级优化后查询文本
语法优化后返回查询。
EXPLAIN SYNTAX
SELECT *
FROM system.numbers AS a, system.numbers AS b, system.numbers AS c;
Query id: 1bb2e467-bbe5-4a84-9945-5b89829e0778
┌─explain────────────────────────────┐
│ SELECT │
│ `--a.number` AS `a.number`, │
│ `--b.number` AS `b.number`, │
│ number AS `c.number` │
│ FROM │
│ ( │
│ SELECT │
│ number AS `--a.number`, │
│ b.number AS `--b.number` │
│ FROM system.numbers AS a │
│ CROSS JOIN system.numbers AS b │
│ ) AS `--.s` │
│ CROSS JOIN system.numbers AS c │
└────────────────────────────────────┘
13 rows in set. Elapsed: 0.003 sec.
1.4 PLAN — 查询执行计划
转储查询计划步骤。
设置:
header— 打印步骤的输出标题。默认值:0。
description— 打印步骤说明。默认值:1。
indexes— 显示使用的索引、过滤部分的数量和应用的每个索引的过滤颗粒数量。默认值:0。支持MergeTree表。
actions— 打印有关步骤操作的详细信息。默认值:0。
json— 以JSON格式将查询计划步骤打印为一行。默认值:0。建议使用TSVRaw格式,以避免不必要的转义。
EXPLAIN
SELECT sum(number)
FROM numbers(10)
GROUP BY number % 4;
Query id: 5ebd9835-6897-4823-8689-5dad750e9425
┌─explain───────────────────────────────────────────────────────────────────────┐
│ Expression ((Projection + Before ORDER BY)) │
│ Aggregating │
│ Expression (Before GROUP BY) │
│ SettingQuotaAndLimits (Set limits and quota after reading from storage) │
│ ReadFromStorage (SystemNumbers) │
└───────────────────────────────────────────────────────────────────────────────┘
5 rows in set. Elapsed: 0.006 sec.
不支持步骤和查询成本估算。
当 时json = 1,查询计划以 JSON 格式表示。每个节点都是一个字典,总是有键Node Type和Plans。Node Type是一个带有步骤名称的字符串。Plans是一个带有子步骤描述的数组。根据节点类型和设置,可能会添加其他可选键。
EXPLAIN json = 1, description = 0
SELECT 1
UNION ALL
SELECT 2
FORMAT TSVRaw;
Query id: 375e32fc-49bf-4ecc-937d-20d71db43f93
[
{
"Plan": {
"Node Type": "Union",
"Plans": [
{
"Node Type": "Expression",
"Plans": [
{
"Node Type": "SettingQuotaAndLimits",
"Plans": [
{
"Node Type": "ReadFromStorage"
}
]
}
]
},
{
"Node Type": "Expression",
"Plans": [
{
"Node Type": "SettingQuotaAndLimits",
"Plans": [
{
"Node Type": "ReadFromStorage"
}
]
}
]
}
]
}
}
]
1 rows in set. Elapsed: 0.009 sec.
使用description= 1,将Description密钥添加到步骤中:
EXPLAIN json = 1, description = 1
SELECT 1
UNION ALL
SELECT 2
FORMAT TSVRaw;
Query id: 8eacb192-7a2e-49cf-9565-0a6f9f43cce7
[
{
"Plan": {
"Node Type": "Union",
"Plans": [
{
"Node Type": "Expression",
"Description": "(Conversion before UNION + (Projection + Before ORDER BY))",
"Plans": [
{
"Node Type": "SettingQuotaAndLimits",
"Description": "Set limits and quota after reading from storage",
"Plans": [
{
"Node Type": "ReadFromStorage",
"Description": "SystemOne"
}
]
}
]
},
{
"Node Type": "Expression",
"Description": "(Conversion before UNION + (Projection + Before ORDER BY))",
"Plans": [
{
"Node Type": "SettingQuotaAndLimits",
"Description": "Set limits and quota after reading from storage",
"Plans": [
{
"Node Type": "ReadFromStorage",
"Description": "SystemOne"
}
]
}
]
}
]
}
}
]
1 rows in set. Elapsed: 0.004 sec.
当header= 1 时,Header键作为列数组添加到步骤中。
EXPLAIN json = 1, description = 0, header = 1 SELECT 1, 2 + dummy;
┌─explain────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│ [
{
"Plan": {
"Node Type": "Expression",
"Header": [
{
"Name": "1",
"Type": "UInt8"
},
{
"Name": "plus(2, dummy)",
"Type": "UInt16"
}
],
"Plans": [
{
"Node Type": "SettingQuotaAndLimits",
"Header": [
{
"Name": "dummy",
"Type": "UInt8"
}
],
"Plans": [
{
"Node Type": "ReadFromStorage",
"Header": [
{
"Name": "dummy",
"Type": "UInt8"
}
]
}
]
}
]
}
}
] │
└────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
1 rows in set. Elapsed: 0.007 sec.
如果indexes= 1,Indexes则添加密钥。它包含一组使用过的索引。每个索引都被描述为带有Type键(字符串MinMax、Partition、PrimaryKey或Skip)和可选键的JSON :
Name— 索引名称(目前仅用于Skip索引)。
Keys— 索引使用的列数组。
Condition— 使用条件的字符串。
Description— 一个索引(目前,仅用于Skip索引)。
Initial Parts— 应用索引之前的一些部分。
Selected Parts— 应用索引后的多个部分。
Initial Granules— 应用索引之前的一些颗粒。
Selected Granulesis — 应用索引后的多个颗粒。
"Node Type": "ReadFromMergeTree",
"Indexes": [
{
"Type": "MinMax",
"Keys": ["y"],
"Condition": "(y in [1, +inf))",
"Initial Parts": 5,
"Selected Parts": 4,
"Initial Granules": 12,
"Selected Granules": 11
},
{
"Type": "Partition",
"Keys": ["y", "bitAnd(z, 3)"],
"Condition": "and((bitAnd(z, 3) not in [1, 1]), and((y in [1, +inf)), (bitAnd(z, 3) not in [1, 1])))",
"Initial Parts": 4,
"Selected Parts": 3,
"Initial Granules": 11,
"Selected Granules": 10
},
{
"Type": "PrimaryKey",
"Keys": ["x", "y"],
"Condition": "and((x in [11, +inf)), (y in [1, +inf)))",
"Initial Parts": 3,
"Selected Parts": 2,
"Initial Granules": 10,
"Selected Granules": 6
},
{
"Type": "Skip",
"Name": "t_minmax",
"Description": "minmax GRANULARITY 2",
"Initial Parts": 2,
"Selected Parts": 1,
"Initial Granules": 6,
"Selected Granules": 2
},
{
"Type": "Skip",
"Name": "t_set",
"Description": "set GRANULARITY 2",
"Initial Parts": 1,
"Selected Parts": 1,
"Initial Granules": 2,
"Selected Granules": 1
}
]
使用actions= 1,添加的键取决于步骤类型。
EXPLAIN json = 1, actions = 1, description = 0
SELECT 1
FORMAT TSVRaw;
[
{
"Plan": {
"Node Type": "Expression",
"Expression": {
"Inputs": [],
"Actions": [
{
"Node Type": "Column",
"Result Type": "UInt8",
"Result Type": "Column",
"Column": "Const(UInt8)",
"Arguments": [],
"Removed Arguments": [],
"Result": 0
}
],
"Outputs": [
{
"Name": "1",
"Type": "UInt8"
}
],
"Positions": [0],
"Project Input": true
},
"Plans": [
{
"Node Type": "SettingQuotaAndLimits",
"Plans": [
{
"Node Type": "ReadFromStorage"
}
]
}
]
}
}
]
1.5 PIPELINE — 查询执行管道
设置:
header— 打印每个输出端口的标题。默认值:0。
graph— 打印以DOT图形描述语言描述的图形。默认值:0。
compact— 如果graph启用设置,则以紧凑模式打印图形。默认值:1。
EXPLAIN PIPELINE
SELECT sum(number)
FROM numbers_mt(100000)
GROUP BY number % 4;
Query id: d9567d7f-0c3b-405b-b543-9b35b6f5c3e9
┌─explain─────────────────────────┐
│ (Expression) │
│ ExpressionTransform │
│ (Aggregating) │
│ Resize 12 → 1 │
│ AggregatingTransform × 12 │
│ (Expression) │
│ ExpressionTransform × 12 │
│ (SettingQuotaAndLimits) │
│ (ReadFromStorage) │
│ NumbersMt × 12 0 → 1 │
└─────────────────────────────────┘
10 rows in set. Elapsed: 0.006 sec.
1.6 EXPLAIN ESTIMATE-解释估计
显示在处理查询时从表中读取的估计行数、标记数和部分数。使用MergeTree系列中的表。
CREATE TABLE ttt
(
`i` Int64
)
ENGINE = MergeTree
ORDER BY i
SETTINGS index_granularity = 16, write_final_mark = 0;
INSERT INTO ttt SELECT number FROM numbers(128);
OPTIMIZE TABLE ttt;
┌─database─┬─table─┬─parts─┬─rows─┬─marks─┐
│ default │ ttt │ 1 │ 128 │ 8 │
└──────────┴───────┴───────┴──────┴───────┘
第 2 章 建表优化
2.1 数据类型
2.1.1 时间字段的类型
建表时能用数值型或日期时间型表示的字段就不要用字符串,全 String 类型在以 Hive 为中心的数仓建设中常见,但 ClickHouse 环境不应受此影响。虽然 ClickHouse 底层将 DateTime 存储为时间戳 Long 类型,但不建议存储 Long 类型, 因为 DateTime 不需要经过函数转换处理,执行效率高、可读性好。
CREATE TABLE t_type2
(
`id` UInt32,
`sku_id` String,
`total_amount` Decimal(16, 2),
`create_time` Int32
)
ENGINE = ReplacingMergeTree(create_time)
PARTITION BY toYYYYMMDD(toDate(create_time))
PRIMARY KEY id
ORDER BY (id, sku_id);
2.1.2 空值存储类型
官方已经指出 Nullable 类型几乎总是会拖累性能,因为存储 Nullable 列时需要创建一个 额外的文件来存储 NULL 的标记,并且 Nullable 列无法被索引。因此除非极特殊情况,应直 接使用字段默认值表示空,或者自行指定一个在业务中无意义的值(例如用-1 表示没有商品 ID)。
CREATE TABLE t_null
(
`x` Int8,
`y` Nullable(Int8)
)
ENGINE = TinyLog;
INSERT INTO t_null VALUES (1, NULL), (2, 3);
官网说明:https://clickhouse.tech/docs/zh/sql-reference/data-types/nullable/
2.2 分区和索引
分区粒度根据业务特点决定,不宜过粗或过细。一般选择按天分区,也可以指定为 Tuple(), 以单表一亿数据为例,分区大小控制在 10-30 个为最佳。必须指定索引列,ClickHouse 中的索引列即排序列,通过 order by 指定,一般在查询条 件中经常被用来充当筛选条件的属性被纳入进来;可以是单一维度,也可以是组合维度的索 引;通常需要满足高级列在前、查询频率大的在前原则;还有基数特别大的不适合做索引列, 如用户表的 userid 字段;通常筛选后的数据满足在百万以内为最佳。
2.2.1 hits_v1 表
CREATE TABLE datasets.hits_v1
(
`WatchID` UInt64,
`JavaEnable` UInt8,
`Title` String,
`GoodEvent` Int16,
`EventTime` DateTime,
`EventDate` Date,
`CounterID` UInt32,
`ClientIP` UInt32,
`ClientIP6` FixedString(16),
`RegionID` UInt32,
`UserID` UInt64,
`CounterClass` Int8,
`OS` UInt8,
`UserAgent` UInt8,
`URL` String,
`Referer` String,
`URLDomain` String,
`RefererDomain` String,
`Refresh` UInt8,
`IsRobot` UInt8,
`RefererCategories` Array(UInt16),
`URLCategories` Array(UInt16),
`URLRegions` Array(UInt32),
`RefererRegions` Array(UInt32),
`ResolutionWidth` UInt16,
`ResolutionHeight` UInt16,
`ResolutionDepth` UInt8,
`FlashMajor` UInt8,
`FlashMinor` UInt8,
`FlashMinor2` String,
`NetMajor` UInt8,
`NetMinor` UInt8,
`UserAgentMajor` UInt16,
`UserAgentMinor` FixedString(2),
`CookieEnable` UInt8,
`JavascriptEnable` UInt8,
`IsMobile` UInt8,
`MobilePhone` UInt8,
`MobilePhoneModel` String,
`Params` String,
`IPNetworkID` UInt32,
`TraficSourceID` Int8,
`SearchEngineID` UInt16,
`SearchPhrase` String,
`AdvEngineID` UInt8,
`IsArtifical` UInt8,
`WindowClientWidth` UInt16,
`WindowClientHeight` UInt16,
`ClientTimeZone` Int16,
`ClientEventTime` DateTime,
`SilverlightVersion1` UInt8,
`SilverlightVersion2` UInt8,
`SilverlightVersion3` UInt32,
`SilverlightVersion4` UInt16,
`PageCharset` String,
`CodeVersion` UInt32,
`IsLink` UInt8,
`IsDownload` UInt8,
`IsNotBounce` UInt8,
`FUniqID` UInt64,
`HID` UInt32,
`IsOldCounter` UInt8,
`IsEvent` UInt8,
`IsParameter` UInt8,
`DontCountHits` UInt8,
`WithHash` UInt8,
`HitColor` FixedString(1),
`UTCEventTime` DateTime,
`Age` UInt8,
`Sex` UInt8,
`Income` UInt8,
`Interests` UInt16,
`Robotness` UInt8,
`GeneralInterests` Array(UInt16),
`RemoteIP` UInt32,
`RemoteIP6` FixedString(16),
`WindowName` Int32,
`OpenerName` Int32,
`HistoryLength` Int16,
`BrowserLanguage` FixedString(2),
`BrowserCountry` FixedString(2),
`SocialNetwork` String,
`SocialAction` String,
`HTTPError` UInt16,
`SendTiming` Int32,
`DNSTiming` Int32,
`ConnectTiming` Int32,
`ResponseStartTiming` Int32,
`ResponseEndTiming` Int32,
`FetchTiming` Int32,
`RedirectTiming` Int32,
`DOMInteractiveTiming` Int32,
`DOMContentLoadedTiming` Int32,
`DOMCompleteTiming` Int32,
`LoadEventStartTiming` Int32,
`LoadEventEndTiming` Int32,
`NSToDOMContentLoadedTiming` Int32,
`FirstPaintTiming` Int32,
`RedirectCount` Int8,
`SocialSourceNetworkID` UInt8,
`SocialSourcePage` String,
`ParamPrice` Int64,
`ParamOrderID` String,
`ParamCurrency` FixedString(3),
`ParamCurrencyID` UInt16,
`GoalsReached` Array(UInt32),
`OpenstatServiceName` String,
`OpenstatCampaignID` String,
`OpenstatAdID` String,
`OpenstatSourceID` String,
`UTMSource` String,
`UTMMedium` String,
`UTMCampaign` String,
`UTMContent` String,
`UTMTerm` String,
`FromTag` String,
`HasGCLID` UInt8,
`RefererHash` UInt64,
`URLHash` UInt64,
`CLID` UInt32,
`YCLID` UInt64,
`ShareService` String,
`ShareURL` String,
`ShareTitle` String,
`ParsedParams.Key1` Array(String),
`ParsedParams.Key2` Array(String),
`ParsedParams.Key3` Array(String),
`ParsedParams.Key4` Array(String),
`ParsedParams.Key5` Array(String),
`ParsedParams.ValueDouble` Array(Float64),
`IslandID` FixedString(16),
`RequestNum` UInt32,
`RequestTry` UInt8
)
ENGINE = MergeTree
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192;
2.2.2 visits_v1 表
CREATE TABLE datasets.visits_v1
(
`CounterID` UInt32,
`StartDate` Date,
`Sign` Int8,
`IsNew` UInt8,
`VisitID` UInt64,
`UserID` UInt64,
`StartTime` DateTime,
`Duration` UInt32,
`UTCStartTime` DateTime,
`PageViews` Int32,
`Hits` Int32,
`IsBounce` UInt8,
`Referer` String,
`StartURL` String,
`RefererDomain` String,
`StartURLDomain` String,
`EndURL` String,
`LinkURL` String,
`IsDownload` UInt8,
`TraficSourceID` Int8,
`SearchEngineID` UInt16,
`SearchPhrase` String,
`AdvEngineID` UInt8,
`PlaceID` Int32,
`RefererCategories` Array(UInt16),
`URLCategories` Array(UInt16),
`URLRegions` Array(UInt32),
`RefererRegions` Array(UInt32),
`IsYandex` UInt8,
`GoalReachesDepth` Int32,
`GoalReachesURL` Int32,
`GoalReachesAny` Int32,
`SocialSourceNetworkID` UInt8,
`SocialSourcePage` String,
`MobilePhoneModel` String,
`ClientEventTime` DateTime,
`RegionID` UInt32,
`ClientIP` UInt32,
`ClientIP6` FixedString(16),
`RemoteIP` UInt32,
`RemoteIP6` FixedString(16),
`IPNetworkID` UInt32,
`SilverlightVersion3` UInt32,
`CodeVersion` UInt32,
`ResolutionWidth` UInt16,
`ResolutionHeight` UInt16,
`UserAgentMajor` UInt16,
`UserAgentMinor` UInt16,
`WindowClientWidth` UInt16,
`WindowClientHeight` UInt16,
`SilverlightVersion2` UInt8,
`SilverlightVersion4` UInt16,
`FlashVersion3` UInt16,
`FlashVersion4` UInt16,
`ClientTimeZone` Int16,
`OS` UInt8,
`UserAgent` UInt8,
`ResolutionDepth` UInt8,
`FlashMajor` UInt8,
`FlashMinor` UInt8,
`NetMajor` UInt8,
`NetMinor` UInt8,
`MobilePhone` UInt8,
`SilverlightVersion1` UInt8,
`Age` UInt8,
`Sex` UInt8,
`Income` UInt8,
`JavaEnable` UInt8,
`CookieEnable` UInt8,
`JavascriptEnable` UInt8,
`IsMobile` UInt8,
`BrowserLanguage` UInt16,
`BrowserCountry` UInt16,
`Interests` UInt16,
`Robotness` UInt8,
`GeneralInterests` Array(UInt16),
`Params` Array(String),
`Goals.ID` Array(UInt32),
`Goals.Serial` Array(UInt32),
`Goals.EventTime` Array(DateTime),
`Goals.Price` Array(Int64),
`Goals.OrderID` Array(String),
`Goals.CurrencyID` Array(UInt32),
`WatchIDs` Array(UInt64),
`ParamSumPrice` Int64,
`ParamCurrency` FixedString(3),
`ParamCurrencyID` UInt16,
`ClickLogID` UInt64,
`ClickEventID` Int32,
`ClickGoodEvent` Int32,
`ClickEventTime` DateTime,
`ClickPriorityID` Int32,
`ClickPhraseID` Int32,
`ClickPageID` Int32,
`ClickPlaceID` Int32,
`ClickTypeID` Int32,
`ClickResourceID` Int32,
`ClickCost` UInt32,
`ClickClientIP` UInt32,
`ClickDomainID` UInt32,
`ClickURL` String,
`ClickAttempt` UInt8,
`ClickOrderID` UInt32,
`ClickBannerID` UInt32,
`ClickMarketCategoryID` UInt32,
`ClickMarketPP` UInt32,
`ClickMarketCategoryName` String,
`ClickMarketPPName` String,
`ClickAWAPSCampaignName` String,
`ClickPageName` String,
`ClickTargetType` UInt16,
`ClickTargetPhraseID` UInt64,
`ClickContextType` UInt8,
`ClickSelectType` Int8,
`ClickOptions` String,
`ClickGroupBannerID` Int32,
`OpenstatServiceName` String,
`OpenstatCampaignID` String,
`OpenstatAdID` String,
`OpenstatSourceID` String,
`UTMSource` String,
`UTMMedium` String,
`UTMCampaign` String,
`UTMContent` String,
`UTMTerm` String,
`FromTag` String,
`HasGCLID` UInt8,
`FirstVisit` DateTime,
`PredLastVisit` Date,
`LastVisit` Date,
`TotalVisits` UInt32,
`TraficSource.ID` Array(Int8),
`TraficSource.SearchEngineID` Array(UInt16),
`TraficSource.AdvEngineID` Array(UInt8),
`TraficSource.PlaceID` Array(UInt16),
`TraficSource.SocialSourceNetworkID` Array(UInt8),
`TraficSource.Domain` Array(String),
`TraficSource.SearchPhrase` Array(String),
`TraficSource.SocialSourcePage` Array(String),
`Attendance` FixedString(16),
`CLID` UInt32,
`YCLID` UInt64,
`NormalizedRefererHash` UInt64,
`SearchPhraseHash` UInt64,
`RefererDomainHash` UInt64,
`NormalizedStartURLHash` UInt64,
`StartURLDomainHash` UInt64,
`NormalizedEndURLHash` UInt64,
`TopLevelDomain` UInt64,
`URLScheme` UInt64,
`OpenstatServiceNameHash` UInt64,
`OpenstatCampaignIDHash` UInt64,
`OpenstatAdIDHash` UInt64,
`OpenstatSourceIDHash` UInt64,
`UTMSourceHash` UInt64,
`UTMMediumHash` UInt64,
`UTMCampaignHash` UInt64,
`UTMContentHash` UInt64,
`UTMTermHash` UInt64,
`FromHash` UInt64,
`WebVisorEnabled` UInt8,
`WebVisorActivity` UInt32,
`ParsedParams.Key1` Array(String),
`ParsedParams.Key2` Array(String),
`ParsedParams.Key3` Array(String),
`ParsedParams.Key4` Array(String),
`ParsedParams.Key5` Array(String),
`ParsedParams.ValueDouble` Array(Float64),
`Market.Type` Array(UInt8),
`Market.GoalID` Array(UInt32),
`Market.OrderID` Array(String),
`Market.OrderPrice` Array(Int64),
`Market.PP` Array(UInt32),
`Market.DirectPlaceID` Array(UInt32),
`Market.DirectOrderID` Array(UInt32),
`Market.DirectBannerID` Array(UInt32),
`Market.GoodID` Array(String),
`Market.GoodName` Array(String),
`Market.GoodQuantity` Array(Int32),
`Market.GoodPrice` Array(Int64),
`IslandID` FixedString(16)
)
ENGINE = CollapsingMergeTree(StartDate, intHash32(UserID), (CounterID, StartDate, intHash32(UserID), VisitID), 8192, Sign);
2.3 表参数
Index_granularity 是用来控制索引粒度的,默认是 8192,如非必须不建议调整。如果表中不是必须保留全量历史数据,建议指定 TTL(生存时间值),可以免去手动过期 历史数据的麻烦,TTL 也可以通过 alter table 语句随时修改。
2.4 写入和删除优化
(1)尽量不要执行单条或小批量删除和插入操作,这样会产生小分区文件,给后台 Merge 任务带来巨大压力
(2)不要一次写入太多分区,或数据写入太快,数据写入太快会导致 Merge 速度跟不 上而报错,一般建议每秒钟发起 2-3 次写入操作,每次操作写入 2w~5w 条数据(依服务器 性能而定)
写入过快报错,报错信息:
1. Code: 252, e.displayText() = DB::Exception: Too many parts(304).
Merges are processing significantly slower than inserts
2. Code: 241, e.displayText() = DB::Exception: Memory limit (for query)
exceeded:would use 9.37 GiB (attempt to allocate chunk of 301989888
bytes), maximum: 9.31 GiB
处理方式:“ Too many parts 处理 ” :使用 WAL 预写日志,提高写入性能。in_memory_parts_enable_wal 默认为 true 在服务器内存充裕的情况下增加内存配额,一般通过 max_memory_usage 来实现 在服务器内存不充裕的情况下,建议将超出部分内容分配到系统硬盘上,但会降低执行 速度,一般通过 max_bytes_before_external_group_by、max_bytes_before_external_sort 参数 来实现。
2.5 常见配置
配置项主要在 config.xml 或 users.xml 中, 基本上都在 users.xml 里
➢ config.xml 的配置项
https://clickhouse.tech/docs/en/operations/server-configuration-parameters/settings/ ➢ users.xml 的配置项
https://clickhouse.tech/docs/en/operations/settings/settings/
2.5.1 CPU 资源
2.5.2 内存资源
2.5.3 存储
ClickHouse 不支持设置多数据目录,为了提升数据 io 性能,可以挂载虚拟券组,一个券 组绑定多块物理磁盘提升读写性能,多数据查询场景 SSD 会比普通机械硬盘快 2-3 倍。
第 3 章 ClickHouse 语法优化规则
ClickHouse 的 SQL 优化规则是基于 RBO(Rule Based Optimization),下面是一些优化规则
3.1 准备测试用表
1)上传官方的数据集
将 visits_v1.tar 和 hits_v1.tar 上传到虚拟机,解压到 clickhouse 数据路径下
[root@clickhouse01 datasets]# ll
总用量 1792572
-rw-r--r--. 1 root root 1271623680 7月 27 08:46 hits_v1.tar
-rw-r--r--. 1 root root 563968000 7月 27 08:45 visits_v1.tar
// 解压到 clickhouse 数据路径
sudo tar -xvf hits_v1.tar -C /var/lib/clickhouse
sudo tar -xvf visits_v1.tar -C /var/lib/clickhouse
//修改所属用户
sudo chown -R clickhouse:clickhouse /var/lib/clickhouse/data/datasets
sudo chown -R clickhouse:clickhouse /var/lib/clickhouse/metadata/datasets
2)重启 clickhouse-server
sudo clickhouse restart
3)执行查询
注意:官方的 tar 包,包含了建库、建表语句、数据内容,这种方式不需要手动建库、建表,最方便。hits_v1 表有 130 多个字段,880 多万条数据 visits_v1 表有 180 多个字段,160 多万条数据
select count() from hits_v1;
select count() from visits_v1;
3.2 COUNT 优化
在调用 count 函数时,如果使用的是 count() 或者 count(*),且没有 where 条件,则 会直接使用 system.tables 的 total_rows,例如:
EXPLAIN
SELECT count()
FROM datasets.hits_v1;
Query id: d435560b-e345-4c33-9ec4-fef5396d6b85
┌─explain──────────────────────────────────────────────┐
│ Expression ((Projection + Before ORDER BY)) │
│ MergingAggregated │
│ ReadFromPreparedSource (Optimized trivial count) │
└──────────────────────────────────────────────────────┘
3 rows in set. Elapsed: 0.005 sec.
注意 Optimized trivial count ,这是对 count 的优化。如果 count 具体的列字段,则不会使用此项优化:
EXPLAIN SELECT count(CounterID) FROM datasets.hits_v1;
Query id: 08cdeefc-e8cb-4d3f-91b7-eb77adedbe35
┌─explain───────────────────────────────────────────────────────────────────────┐
│ Expression ((Projection + Before ORDER BY)) │
│ Aggregating │
│ Expression (Before GROUP BY) │
│ SettingQuotaAndLimits (Set limits and quota after reading from storage) │
│ ReadFromMergeTree │
└───────────────────────────────────────────────────────────────────────────────┘
5 rows in set. Elapsed: 0.009 sec.
3.3 消除子查询重复字段
下面语句子查询中有两个重复的 id 字段,会被去重:
EXPLAIN SYNTAX
SELECT
a.UserID,
b.VisitID,
a.URL,
b.UserID
FROM hits_v1 AS a
LEFT JOIN
(
SELECT
UserID,
UserID AS HaHa,
VisitID
FROM visits_v1
) AS b USING (UserID)
LIMIT 3
SELECT
UserID,
VisitID,
URL,
b.UserID
FROM hits_v1 AS a
ALL LEFT JOIN
(
SELECT
UserID,
VisitID
FROM visits_v1
) AS b USING (UserID)
LIMIT 3;
3.4 谓词下推
当 group by 有 having 子句,但是没有 with cube、with rollup 或者 with totals 修饰的时 候,having 过滤会下推到 where 提前过滤。例如下面的查询,HAVING name 变成了 WHERE name,在 group by 之前过滤:
EXPLAIN SYNTAX
SELECT UserID
FROM hits_v1
GROUP BY UserID
HAVING UserID = '8585742290196126178';
SELECT UserID
FROM hits_v1
WHERE UserID = '8585742290196126178'
GROUP BY UserID;
子查询也支持谓词下推:
EXPLAIN SYNTAX
SELECT *
FROM
(
SELECT UserID
FROM visits_v1
)
WHERE UserID = '8585742290196126178';
EXPLAIN SYNTAX
SELECT *
FROM
(
SELECT UserID
FROM visits_v1
WHERE UserID = '8585742290196126178'
);
但是有一个缺点就是谓词下推之后不会把原来的哪些不符合的数据给删掉
再来一个复杂例子:
EXPLAIN SYNTAX
SELECT *
FROM
(
SELECT *
FROM
(
SELECT UserID
FROM visits_v1
)
UNION ALL
SELECT *
FROM
(
SELECT UserID
FROM visits_v1
)
)
WHERE UserID = '8585742290196126178';
SELECT UserID
FROM
(
SELECT UserID
FROM
(
SELECT UserID
FROM visits_v1
WHERE UserID = '8585742290196126178'
)
UNION ALL
SELECT UserID
FROM
(
SELECT UserID
FROM visits_v1
WHERE UserID = '8585742290196126178'
)
);
这个是优化之后的数据
3.5 聚合计算外推
聚合函数内的计算,会外推,例如:
EXPLAIN SYNTAX
SELECT sum(UserID * 2)
FROM visits_v1;
SELECT sum(UserID) * 2
FROM visits_v1;
3.6 聚合函数消除
如果对聚合键,也就是 group by key 使用 min、max、any 聚合函数,则将函数消除, 例如:
EXPLAIN SYNTAX
SELECT
sum(UserID * 2),
max(VisitID),
max(UserID)
FROM visits_v1
GROUP BY UserID
SELECT
sum(UserID) * 2,
max(VisitID),
UserID
FROM visits_v1
GROUP BY UserID;
3.7 删除重复的 order by key
例如下面的语句,重复的聚合键 id 字段会被去重:
EXPLAIN SYNTAX
SELECT *
FROM visits_v1
ORDER BY
UserID ASC,
UserID ASC,
VisitID ASC,
VisitID ASC;
SELECT
CounterID,
StartDate,
Sign,
IsNew,
VisitID,
UserID,
StartTime,
Duration,
UTCStartTime,
PageViews,
Hits,
IsBounce,
Referer,
StartURL,
RefererDomain,
StartURLDomain,
EndURL,
LinkURL,
IsDownload,
TraficSourceID,
SearchEngineID,
SearchPhrase,
AdvEngineID,
PlaceID,
RefererCategories,
URLCategories,
URLRegions,
RefererRegions,
IsYandex,
GoalReachesDepth,
GoalReachesURL,
GoalReachesAny,
SocialSourceNetworkID,
SocialSourcePage,
MobilePhoneModel,
ClientEventTime,
RegionID,
ClientIP,
ClientIP6,
RemoteIP,
RemoteIP6,
IPNetworkID,
SilverlightVersion3,
CodeVersion,
ResolutionWidth,
ResolutionHeight,
UserAgentMajor,
UserAgentMinor,
WindowClientWidth,
WindowClientHeight,
SilverlightVersion2,
SilverlightVersion4,
FlashVersion3,
FlashVersion4,
ClientTimeZone,
OS,
UserAgent,
ResolutionDepth,
FlashMajor,
FlashMinor,
NetMajor,
NetMinor,
MobilePhone,
SilverlightVersion1,
Age,
Sex,
Income,
JavaEnable,
CookieEnable,
JavascriptEnable,
IsMobile,
BrowserLanguage,
BrowserCountry,
Interests,
Robotness,
GeneralInterests,
Params,
`Goals.ID`,
`Goals.Serial`,
`Goals.EventTime`,
`Goals.Price`,
`Goals.OrderID`,
`Goals.CurrencyID`,
WatchIDs,
ParamSumPrice,
ParamCurrency,
ParamCurrencyID,
ClickLogID,
ClickEventID,
ClickGoodEvent,
ClickEventTime,
ClickPriorityID,
ClickPhraseID,
ClickPageID,
ClickPlaceID,
ClickTypeID,
ClickResourceID,
ClickCost,
ClickClientIP,
ClickDomainID,
ClickURL,
ClickAttempt,
ClickOrderID,
ClickBannerID,
ClickMarketCategoryID,
ClickMarketPP,
ClickMarketCategoryName,
ClickMarketPPName,
ClickAWAPSCampaignName,
ClickPageName,
ClickTargetType,
ClickTargetPhraseID,
ClickContextType,
ClickSelectType,
ClickOptions,
ClickGroupBannerID,
OpenstatServiceName,
OpenstatCampaignID,
OpenstatAdID,
OpenstatSourceID,
UTMSource,
UTMMedium,
UTMCampaign,
UTMContent,
UTMTerm,
FromTag,
HasGCLID,
FirstVisit,
PredLastVisit,
LastVisit,
TotalVisits,
`TraficSource.ID`,
`TraficSource.SearchEngineID`,
`TraficSource.AdvEngineID`,
`TraficSource.PlaceID`,
`TraficSource.SocialSourceNetworkID`,
`TraficSource.Domain`,
`TraficSource.SearchPhrase`,
`TraficSource.SocialSourcePage`,
Attendance,
CLID,
YCLID,
NormalizedRefererHash,
SearchPhraseHash,
RefererDomainHash,
NormalizedStartURLHash,
StartURLDomainHash,
NormalizedEndURLHash,
TopLevelDomain,
URLScheme,
OpenstatServiceNameHash,
OpenstatCampaignIDHash,
OpenstatAdIDHash,
OpenstatSourceIDHash,
UTMSourceHash,
UTMMediumHash,
UTMCampaignHash,
UTMContentHash,
UTMTermHash,
FromHash,
WebVisorEnabled,
WebVisorActivity,
`ParsedParams.Key1`,
`ParsedParams.Key2`,
`ParsedParams.Key3`,
`ParsedParams.Key4`,
`ParsedParams.Key5`,
`ParsedParams.ValueDouble`,
`Market.Type`,
`Market.GoalID`,
`Market.OrderID`,
`Market.OrderPrice`,
`Market.PP`,
`Market.DirectPlaceID`,
`Market.DirectOrderID`,
`Market.DirectBannerID`,
`Market.GoodID`,
`Market.GoodName`,
`Market.GoodQuantity`,
`Market.GoodPrice`,
IslandID
FROM visits_v1
ORDER BY
UserID ASC,
VisitID ASC ;
3.8 删除重复的 limit by key
例如下面的语句,重复声明的 name 字段会被去重:
EXPLAIN SYNTAX
SELECT *
FROM visits_v1
LIMIT 3 BY
VisitID,
VisitID
LIMIT 10;
SELECT
CounterID,
StartDate,
Sign,
IsNew,
VisitID,
UserID,
StartTime,
Duration,
UTCStartTime,
PageViews,
Hits,
IsBounce,
Referer,
StartURL,
RefererDomain,
StartURLDomain,
EndURL,
LinkURL,
IsDownload,
TraficSourceID,
SearchEngineID,
SearchPhrase,
AdvEngineID,
PlaceID,
RefererCategories,
URLCategories,
URLRegions,
RefererRegions,
IsYandex,
GoalReachesDepth,
GoalReachesURL,
GoalReachesAny,
SocialSourceNetworkID,
SocialSourcePage,
MobilePhoneModel,
ClientEventTime,
RegionID,
ClientIP,
ClientIP6,
RemoteIP,
RemoteIP6,
IPNetworkID,
SilverlightVersion3,
CodeVersion,
ResolutionWidth,
ResolutionHeight,
UserAgentMajor,
UserAgentMinor,
WindowClientWidth,
WindowClientHeight,
SilverlightVersion2,
SilverlightVersion4,
FlashVersion3,
FlashVersion4,
ClientTimeZone,
OS,
UserAgent,
ResolutionDepth,
FlashMajor,
FlashMinor,
NetMajor,
NetMinor,
MobilePhone,
SilverlightVersion1,
Age,
Sex,
Income,
JavaEnable,
CookieEnable,
JavascriptEnable,
IsMobile,
BrowserLanguage,
BrowserCountry,
Interests,
Robotness,
GeneralInterests,
Params,
`Goals.ID`,
`Goals.Serial`,
`Goals.EventTime`,
`Goals.Price`,
`Goals.OrderID`,
`Goals.CurrencyID`,
WatchIDs,
ParamSumPrice,
ParamCurrency,
ParamCurrencyID,
ClickLogID,
ClickEventID,
ClickGoodEvent,
ClickEventTime,
ClickPriorityID,
ClickPhraseID,
ClickPageID,
ClickPlaceID,
ClickTypeID,
ClickResourceID,
ClickCost,
ClickClientIP,
ClickDomainID,
ClickURL,
ClickAttempt,
ClickOrderID,
ClickBannerID,
ClickMarketCategoryID,
ClickMarketPP,
ClickMarketCategoryName,
ClickMarketPPName,
ClickAWAPSCampaignName,
ClickPageName,
ClickTargetType,
ClickTargetPhraseID,
ClickContextType,
ClickSelectType,
ClickOptions,
ClickGroupBannerID,
OpenstatServiceName,
OpenstatCampaignID,
OpenstatAdID,
OpenstatSourceID,
UTMSource,
UTMMedium,
UTMCampaign,
UTMContent,
UTMTerm,
FromTag,
HasGCLID,
FirstVisit,
PredLastVisit,
LastVisit,
TotalVisits,
`TraficSource.ID`,
`TraficSource.SearchEngineID`,
`TraficSource.AdvEngineID`,
`TraficSource.PlaceID`,
`TraficSource.SocialSourceNetworkID`,
`TraficSource.Domain`,
`TraficSource.SearchPhrase`,
`TraficSource.SocialSourcePage`,
Attendance,
CLID,
YCLID,
NormalizedRefererHash,
SearchPhraseHash,
RefererDomainHash,
NormalizedStartURLHash,
StartURLDomainHash,
NormalizedEndURLHash,
TopLevelDomain,
URLScheme,
OpenstatServiceNameHash,
OpenstatCampaignIDHash,
OpenstatAdIDHash,
OpenstatSourceIDHash,
UTMSourceHash,
UTMMediumHash,
UTMCampaignHash,
UTMContentHash,
UTMTermHash,
FromHash,
WebVisorEnabled,
WebVisorActivity,
`ParsedParams.Key1`,
`ParsedParams.Key2`,
`ParsedParams.Key3`,
`ParsedParams.Key4`,
`ParsedParams.Key5`,
`ParsedParams.ValueDouble`,
`Market.Type`,
`Market.GoalID`,
`Market.OrderID`,
`Market.OrderPrice`,
`Market.PP`,
`Market.DirectPlaceID`,
`Market.DirectOrderID`,
`Market.DirectBannerID`,
`Market.GoodID`,
`Market.GoodName`,
`Market.GoodQuantity`,
`Market.GoodPrice`,
IslandID
FROM visits_v1
LIMIT 3 BY VisitID
LIMIT 10 ;
3.9 删除重复的 USING Key
例如下面的语句,重复的关联键 id 字段会被去重:
EXPLAIN SYNTAX
SELECT
a.UserID,
a.UserID,
b.VisitID,
a.URL,
b.UserID
FROM hits_v1 AS a
LEFT JOIN visits_v1 AS b USING (UserID, UserID)
SELECT
UserID,
UserID,
VisitID,
URL,
b.UserID
FROM hits_v1 AS a
ALL LEFT JOIN visits_v1 AS b USING (UserID);
3.10 标量替换
如果子查询只返回一行数据,在被引用的时候用标量替换,例如下面语句中的 total_disk_usage 字段:
EXPLAIN SYNTAX
WITH (
SELECT sum(bytes)
FROM system.parts
WHERE active
) AS total_disk_usage
SELECT
(sum(bytes) / total_disk_usage) * 100 AS table_disk_usage,
table
FROM system.parts
GROUP BY table
ORDER BY table_disk_usage DESC
LIMIT 10;
WITH identity(CAST(0, 'UInt64')) AS total_disk_usage
SELECT
(sum(bytes_on_disk AS bytes) / total_disk_usage) * 100 AS table_disk_usage,
table
FROM system.parts
GROUP BY table
ORDER BY table_disk_usage DESC;
LIMIT 10
3.11 三元运算优化
如果开启了 optimize_if_chain_to_multiif 参数,三元运算符会被替换成 multiIf 函数, 例如:
EXPLAIN SYNTAX
SELECT if(number = 1, 'hello', if(number = 2, 'world', 'atguigu'))
FROM numbers(10)
SETTINGS optimize_if_chain_to_multiif = 1;
SELECT multiIf(number = 1, 'hello', number = 2, 'world', 'atguigu')
FROM numbers(10)
SETTINGS optimize_if_chain_to_multiif = 1;
第 4 章 查询优化
4.1 单表查询
4.1.1 Prewhere 替代 where
Prewhere 和 where 语句的作用相同,用来过滤数据。不同之处在于 prewhere 只支持 *MergeTree 族系列引擎的表,首先会读取指定的列数据,来判断数据过滤,等待数据过滤 之后再读取 select 声明的列字段来补全其余属性。当查询列明显多于筛选列时使用 Prewhere 可十倍提升查询性能,Prewhere 会自动优化 执行过滤阶段的数据读取方式,降低 io 操作。在某些场合下,prewhere 语句比 where 语句处理的数据量更少性能更高。
-- 关闭 where 自动转 prewhere(默认情况下, where 条件会自动优化成 prewhere)
select * from system.settings where name='optimize_move_to_prewhere';
set optimize_move_to_prewhere=0;
select WatchID,
JavaEnable,
Title,
GoodEvent,
EventTime,
EventDate,
CounterID,
ClientIP,
ClientIP6,
RegionID,
UserID,
CounterClass,
OS,
UserAgent,
URL,
Referer,
URLDomain,
RefererDomain,
Refresh,
IsRobot,
RefererCategories,
URLCategories,
URLRegions,
RefererRegions,
ResolutionWidth,
ResolutionHeight,
ResolutionDepth,
FlashMajor,
FlashMinor,
FlashMinor2
from datasets.hits_v1 where UserID='3198390223272470366';
select WatchID,
JavaEnable,
Title,
GoodEvent,
EventTime,
EventDate,
CounterID,
ClientIP,
ClientIP6,
RegionID,
UserID,
CounterClass,
OS,
UserAgent,
URL,
Referer,
URLDomain,
RefererDomain,
Refresh,
IsRobot,
RefererCategories,
URLCategories,
URLRegions,
RefererRegions,
ResolutionWidth,
ResolutionHeight,
ResolutionDepth,
FlashMajor,
FlashMinor,
FlashMinor2
from datasets.hits_v1 prewhere UserID='3198390223272470366';
默认情况,我们肯定不会关闭 where 自动优化成 prewhere,但是某些场景即使开启优 化,也不会自动转换成 prewhere,需要手动指定 prewhere:
⚫ 使用常量表达式
⚫ 使用默认值为 alias 类型的字段
⚫ 包含了 arrayJOIN,globalIn,globalNotIn 或者 indexHint 的查询
⚫ select 查询的列字段和 where 的谓词相同
⚫ 使用了主键字段
4.1.2 数据采样
通过采样运算可极大提升数据分析的性能
SELECT
Title,
count(*) AS PageViews
FROM hits_v1
SAMPLE 1 / 10
WHERE CounterID = 57
GROUP BY Title
ORDER BY PageViews DESC
LIMIT 1000;
采样修饰符只有在 MergeTree engine 表中才有效,且在创建表时需要指定采样策略。
4.1.3 列裁剪与分区裁剪
数据量太大时应避免使用 select * 操作,查询的性能会与查询的字段大小和数量成线性 表换,字段越少,消耗的 io 资源越少,性能就会越高
反例:
select * from datasets.hits_v1;
正例:
select WatchID,
JavaEnable,
Title,
GoodEvent,
EventTime,
EventDate,
CounterID,
ClientIP,
ClientIP6,
RegionID,
UserID
from datasets.hits_v1;
分区裁剪就是只读取需要的分区,在过滤条件中指定。
select WatchID,
JavaEnable,
Title,
GoodEvent,
EventTime,
EventDate,
CounterID,
ClientIP,
ClientIP6,
RegionID,
UserID
from datasets.hits_v1
where EventDate='2014-03-23';
4.1.4 orderby 结合 where、limit
千万以上数据集进行 order by 查询时需要搭配 where 条件和 limit 语句一起使用。
SELECT
UserID,
Age
FROM hits_v1
WHERE CounterID = 57
ORDER BY Age DESC
LIMIT 1000;
4.1.5 避免构建虚拟列
如非必须,不要在结果集上构建虚拟列,虚拟列非常消耗资源浪费性能,可以考虑在前 端进行处理,或者在表中构造实际字段进行额外存储。
SELECT
Income,
Age,
Income / Age AS IncRate
FROM datasets.hits_v1
LIMIT 1;
正例:拿到 Income 和 Age 后,考虑在前端进行处理,或者在表中构造实际字段进行额外存储
SELECT
Income,
Age
FROM datasets.hits_v1
LIMIT 1;
4.1.6 uniqCombined 替代 distinct
性能可提升 10 倍以上,uniqCombined 底层采用类似 HyperLogLog 算法实现,能接收 2% 左右的数据误差,可直接使用这种去重方式提升查询性能。Count(distinct )会使用 uniqExact 精确去重。不建议在千万级不同数据上执行 distinct 去重查询,改为近似去重 uniqCombined
反例:
select count(distinct rand()) from hits_v1;
正例:
SELECT uniqCombined(rand()) from datasets.hits_v1;
但是虽然说计算的值是不一样的,但是这个的话效率是非常高的。
4.1.7 使用物化视图
4.1.8 其他注意事项
(1)查询熔断
为了避免因个别慢查询引起的服务雪崩的问题,除了可以为单个查询设置超时以外,还 可以配置周期熔断,在一个查询周期内,如果用户频繁进行慢查询操作超出规定阈值后将无 法继续进行查询操作。
(2)关闭虚拟内存
物理内存和虚拟内存的数据交换,会导致查询变慢,资源允许的情况下关闭虚拟内存。
(3)配置 join_use_nulls
为每一个账户添加 join_use_nulls 配置,左表中的一条记录在右表中不存在,右表的相 应字段会返回该字段相应数据类型的默认值,而不是标准 SQL 中的 Null 值。
(4)批量写入时先排序
批量写入数据时,必须控制每个批次的数据中涉及到的分区的数量,在写入之前最好对 需要导入的数据进行排序。无序的数据或者涉及的分区太多,会导致 ClickHouse 无法及时对 新导入的数据进行合并,从而影响查询性能。
(5)关注 CPU
cpu 一般在 50%左右会出现查询波动,达到 70%会出现大范围的查询超时,cpu 是最关 键的指标,要非常关注。
4.2 多表关联
4.2.1 准备表和数据
#创建小表
CREATE TABLE visits_v2
ENGINE = CollapsingMergeTree(Sign)
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate, intHash32(UserID), VisitID)
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192 AS
SELECT *
FROM visits_v1
LIMIT 10000;
#创建 join 结果表:避免控制台疯狂打印数据
CREATE TABLE hits_v2
ENGINE = MergeTree
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192 AS
SELECT *
FROM hits_v1
WHERE 1 = 0;
4.2.2 用 IN 代替 JOIN
当多表联查时,查询的数据仅从其中一张表出时,可考虑用 IN 操作而不是 JOIN
INSERT INTO hits_v2 SELECT a.*
FROM hits_v1 AS a
WHERE a.CounterID IN (
SELECT CounterID
FROM visits_v1
);
4.2.3 大小表 JOIN
多表 join 时要满足小表在右的原则,右表关联时被加载到内存中与左表进行比较, ClickHouse 中无论是 Left join 、Right join 还是 Inner join 永远都是拿着右表中的每一条记录 到左表中查找该记录是否存在,所以右表必须是小表。
(1)小表在右
INSERT INTO hits_v2 SELECT a.*
FROM hits_v1 AS a
LEFT JOIN visits_v2 AS b ON a.CounterID = b.CounterID;
(2)大表在右
INSERT INTO hits_v2 SELECT a.*
FROM visits_v2 AS b
LEFT JOIN hits_v1 AS a ON a.CounterID = b.CounterID;
4.2.4 注意谓词下推(版本差异)
ClickHouse 在 join 查询时不会主动发起谓词下推的操作,需要每个子查询提前完成过滤 操作,需要注意的是,是否执行谓词下推,对性能影响差别很大(新版本中已经不存在此问 题,但是需要注意谓词的位置的不同依然有性能的差异)
EXPLAIN SYNTAX
SELECT a.*
FROM hits_v1 AS a
LEFT JOIN visits_v2 AS b ON a.CounterID = b.CounterID
HAVING a.EventDate = '2014-03-17';
SELECT
WatchID,
JavaEnable,
Title,
GoodEvent,
EventTime,
EventDate,
CounterID,
ClientIP,
ClientIP6,
RegionID,
UserID,
CounterClass,
OS,
UserAgent,
URL,
Referer,
URLDomain,
RefererDomain,
Refresh,
IsRobot,
RefererCategories,
URLCategories,
URLRegions,
RefererRegions,
ResolutionWidth,
ResolutionHeight,
ResolutionDepth,
FlashMajor,
FlashMinor,
FlashMinor2,
NetMajor,
NetMinor,
UserAgentMajor,
UserAgentMinor,
CookieEnable,
JavascriptEnable,
IsMobile,
MobilePhone,
MobilePhoneModel,
Params,
IPNetworkID,
TraficSourceID,
SearchEngineID,
SearchPhrase,
AdvEngineID,
IsArtifical,
WindowClientWidth,
WindowClientHeight,
ClientTimeZone,
ClientEventTime,
SilverlightVersion1,
SilverlightVersion2,
SilverlightVersion3,
SilverlightVersion4,
PageCharset,
CodeVersion,
IsLink,
IsDownload,
IsNotBounce,
FUniqID,
HID,
IsOldCounter,
IsEvent,
IsParameter,
DontCountHits,
WithHash,
HitColor,
UTCEventTime,
Age,
Sex,
Income,
Interests,
Robotness,
GeneralInterests,
RemoteIP,
RemoteIP6,
WindowName,
OpenerName,
HistoryLength,
BrowserLanguage,
BrowserCountry,
SocialNetwork,
SocialAction,
HTTPError,
SendTiming,
DNSTiming,
ConnectTiming,
ResponseStartTiming,
ResponseEndTiming,
FetchTiming,
RedirectTiming,
DOMInteractiveTiming,
DOMContentLoadedTiming,
DOMCompleteTiming,
LoadEventStartTiming,
LoadEventEndTiming,
NSToDOMContentLoadedTiming,
FirstPaintTiming,
RedirectCount,
SocialSourceNetworkID,
SocialSourcePage,
ParamPrice,
ParamOrderID,
ParamCurrency,
ParamCurrencyID,
GoalsReached,
OpenstatServiceName,
OpenstatCampaignID,
OpenstatAdID,
OpenstatSourceID,
UTMSource,
UTMMedium,
UTMCampaign,
UTMContent,
UTMTerm,
FromTag,
HasGCLID,
RefererHash,
URLHash,
CLID,
YCLID,
ShareService,
ShareURL,
ShareTitle,
`ParsedParams.Key1`,
`ParsedParams.Key2`,
`ParsedParams.Key3`,
`ParsedParams.Key4`,
`ParsedParams.Key5`,
`ParsedParams.ValueDouble`,
IslandID,
RequestNum,
RequestTry
FROM hits_v1 AS a
ALL LEFT JOIN visits_v2 AS b ON CounterID = b.CounterID
PREWHERE EventDate = '2014-03-17' ;
EXPLAIN SYNTAX
SELECT a.*
FROM hits_v1 AS a
LEFT JOIN visits_v2 AS b ON a.CounterID = b.CounterID
HAVING b.StartDate = '2014-03-17'
SELECT
WatchID,
JavaEnable,
Title,
GoodEvent,
EventTime,
EventDate,
CounterID,
ClientIP,
ClientIP6,
RegionID,
UserID,
CounterClass,
OS,
UserAgent,
URL,
Referer,
URLDomain,
RefererDomain,
Refresh,
IsRobot,
RefererCategories,
URLCategories,
URLRegions,
RefererRegions,
ResolutionWidth,
ResolutionHeight,
ResolutionDepth,
FlashMajor,
FlashMinor,
FlashMinor2,
NetMajor,
NetMinor,
UserAgentMajor,
UserAgentMinor,
CookieEnable,
JavascriptEnable,
IsMobile,
MobilePhone,
MobilePhoneModel,
Params,
IPNetworkID,
TraficSourceID,
SearchEngineID,
SearchPhrase,
AdvEngineID,
IsArtifical,
WindowClientWidth,
WindowClientHeight,
ClientTimeZone,
ClientEventTime,
SilverlightVersion1,
SilverlightVersion2,
SilverlightVersion3,
SilverlightVersion4,
PageCharset,
CodeVersion,
IsLink,
IsDownload,
IsNotBounce,
FUniqID,
HID,
IsOldCounter,
IsEvent,
IsParameter,
DontCountHits,
WithHash,
HitColor,
UTCEventTime,
Age,
Sex,
Income,
Interests,
Robotness,
GeneralInterests,
RemoteIP,
RemoteIP6,
WindowName,
OpenerName,
HistoryLength,
BrowserLanguage,
BrowserCountry,
SocialNetwork,
SocialAction,
HTTPError,
SendTiming,
DNSTiming,
ConnectTiming,
ResponseStartTiming,
ResponseEndTiming,
FetchTiming,
RedirectTiming,
DOMInteractiveTiming,
DOMContentLoadedTiming,
DOMCompleteTiming,
LoadEventStartTiming,
LoadEventEndTiming,
NSToDOMContentLoadedTiming,
FirstPaintTiming,
RedirectCount,
SocialSourceNetworkID,
SocialSourcePage,
ParamPrice,
ParamOrderID,
ParamCurrency,
ParamCurrencyID,
GoalsReached,
OpenstatServiceName,
OpenstatCampaignID,
OpenstatAdID,
OpenstatSourceID,
UTMSource,
UTMMedium,
UTMCampaign,
UTMContent,
UTMTerm,
FromTag,
HasGCLID,
RefererHash,
URLHash,
CLID,
YCLID,
ShareService,
ShareURL,
ShareTitle,
`ParsedParams.Key1`,
`ParsedParams.Key2`,
`ParsedParams.Key3`,
`ParsedParams.Key4`,
`ParsedParams.Key5`,
`ParsedParams.ValueDouble`,
IslandID,
RequestNum,
RequestTry
FROM hits_v1 AS a
ALL LEFT JOIN visits_v2 AS b ON CounterID = b.CounterID
WHERE StartDate = '2014-03-17' ;
INSERT INTO hits_v2 SELECT a.*
FROM hits_v1 AS a
LEFT JOIN visits_v2 AS b ON a.CounterID = b.CounterID
WHERE a.EventDate = '2014-03-17';
INSERT INTO hits_v2 SELECT a.*
FROM
(
SELECT *
FROM hits_v1
WHERE EventDate = '2014-03-17'
) AS a
LEFT JOIN visits_v2 AS b ON a.CounterID = b.CounterID;
达到先过滤然后再join的思想
4.2.5 分布式表使用 GLOBAL
两张分布式表上的 IN 和 JOIN 之前必须加上 GLOBAL 关键字,右表只会在接收查询请求 的那个节点查询一次,并将其分发到其他节点上。如果不加 GLOBAL 关键字的话,每个节点 都会单独发起一次对右表的查询,而右表又是分布式表,就导致右表一共会被查询 N²次(N 是该分布式表的分片数量),这就是查询放大,会带来很大开销。
4.2.6 使用字典表
将一些需要关联分析的业务创建成字典表进行 join 操作,前提是字典表不宜太大,因为 字典表会常驻内存
4.2.7 提前过滤
通过增加逻辑过滤可以减少数据扫描,达到提高执行速度及降低内存消耗的目的
第 5 章 数据一致性(重点)
查询 CK 手册发现,即便对数据一致性支持最好的 Mergetree,也只是保证最终一致性:
我们在使用 ReplacingMergeTree、SummingMergeTree 这类表引擎的时候,会出现短暂 数据不一致的情况。在某些对一致性非常敏感的场景,通常有以下几种解决方案。
5.1 准备测试表和数据
(1)创建表
CREATE TABLE test_a
(
`user_id` UInt64,
`score` String,
`deleted` UInt8 DEFAULT 0,
`create_time` DateTime DEFAULT toDateTime(0)
)
ENGINE = ReplacingMergeTree(create_time)
ORDER BY user_id;
其中:
user_id 是数据去重更新的标识;
create_time 是版本号字段,每组数据中 create_time 最大的一行表示最新的数据;
deleted 是自定的一个标记位,比如 0 代表未删除,1 代表删除数据。
(2)写入 1000 万 测试数据
INSERT INTO test_a (user_id, score) WITH (
SELECT ['A', 'B', 'C', 'D', 'E', 'F', 'G']
) AS dict
SELECT
number AS user_id,
dict[(number % 7) + 1]
FROM numbers(10000000);
(3)修改前 50 万 行数据,修改内容包括 name 字段和 create_time 版本号字段
INSERT INTO test_a (user_id, score, create_time) WITH (
SELECT ['AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG']
) AS dict
SELECT
number AS user_id,
dict[(number % 7) + 1],
now() AS create_time
FROM numbers(500000);
(4)统计总数
SELECT COUNT() FROM test_a;
还未触发分区合并,所以还未去重。
5.2 手动 OPTIMIZE
在写入数据后,立刻执行 OPTIMIZE 强制触发新写入分区的合并动作。
OPTIMIZE TABLE test_a FINAL;
5.3 通过 Group by 去重
(1)执行去重的查询
SELECT
user_id,
argMax(score, create_time) AS score,
argMax(deleted, create_time) AS deleted,
max(create_time) AS ctime
FROM test_a
GROUP BY user_id
HAVING deleted = 0
LIMIT 1;
函数说明:
◼ argMax(field1,field2):按照 field2 的最大值取 field1 的值。
当我们更新数据时,会写入一行新的数据,例如上面语句中,通过查询最大的 create_time 得到修改后的 score 字段值。
(2)创建视图,方便测试
CREATE VIEW view_test_a AS
SELECT
user_id ,
argMax(score, create_time) AS score,
argMax(deleted, create_time) AS deleted,
max(create_time) AS ctime
FROM test_a
GROUP BY user_id
HAVING deleted = 0;
(3)插入重复数据,再次查询
#再次插入一条数据
INSERT INTO TABLE test_a(user_id,score,create_time)
VALUES(0,'AAAA',now());
#再次查询
SELECT *
FROM view_test_a
WHERE user_id = 0;
(4)删除数据测试
#再次插入一条标记为删除的数据
INSERT INTO TABLE test_a(user_id,score,deleted,create_time)
VALUES(0,'AAAA',1,now());
#再次查询,刚才那条数据看不到了
SELECT *
FROM view_test_a
WHERE user_id = 0;
这行数据并没有被真正的删除,而是被过滤掉了。在一些合适的场景下,可以结合 表 级别的 TTL 最终将物理数据删除。
5.4 通过 FINAL 查询
在查询语句后增加 FINAL 修饰符,这样在查询的过程中将会执行 Merge 的特殊逻辑(例 如数据去重,预聚合等)。但是这种方法在早期版本基本没有人使用,因为在增加 FINAL 之后,我们的查询将会变 成一个单线程的执行过程,查询速度非常慢。在 v20.5.2.7-stable 版本中,FINAL 查询支持多线程执行,并且可以通过 max_final_threads 参数控制单个查询的线程数。但是目前读取 part 部分的动作依然是串行的。FINAL 查询最终的性能和很多因素相关,列字段的大小、分区的数量等等都会影响到最 终的查询时间,所以还要结合实际场景取舍。
参考链接:https://github.com/ClickHouse/ClickHouse/pull/10463
使用 hits_v1 表进行测试:分别安装了 20.4.5.36 和 21.7.3.14 两个版本的 ClickHouse 进行对比。
5.4.1 老版本测试
(1)普通查询语句
select * from visits_v1 WHERE StartDate = '2014-03-17' limit 100;
(2)FINAL 查询
select * from visits_v1 FINAL WHERE StartDate = '2014-03-17' limit 100;
先前的并行查询变成了单线程。
5.4.2 新版本测试
(1)普通语句查询
select * from visits_v1 WHERE StartDate = '2014-03-17' limit 100 settings
max_threads = 2;
查看执行计划:
EXPLAIN PIPELINE
SELECT *
FROM visits_v1
WHERE StartDate = '2014-03-17'
LIMIT 100
SETTINGS max_threads = 2;
明显将由 2 个线程并行读取 part 查询。
(2)FINAL 查询
select * from visits_v1 final WHERE StartDate = '2014-03-17' limit 100
settings max_final_threads = 2;
查询速度没有普通的查询快,但是相比之前已经有了一些提升,查看 FINAL 查询的执行 计划:
explain pipeline select * from visits_v1 final WHERE StartDate = '2014-
03-17' limit 100 settings max_final_threads = 2;
从 CollapsingSortedTransform 这一步开始已经是多线程执行,但是读取 part 部分的动 作还是串行
第 6 章 物化视图
ClickHouse 的物化视图是一种查询结果的持久化,它确实是给我们带来了查询效率的提 升。用户查起来跟表没有区别,它就是一张表,它也像是一张时刻在预计算的表,创建的过 程它是用了一个特殊引擎,加上后来 as select,就是 create 一个 table as select 的写法。“查询结果集”的范围很宽泛,可以是基础表中部分数据的一份简单拷贝,也可以是多 表 join 之后产生的结果或其子集,或者原始数据的聚合指标等等。所以,物化视图不会随着 基础表的变化而变化,所以它也称为快照(snapshot)
6.1 概述
6.1.1 物化视图与普通视图的区别
普通视图不保存数据,保存的仅仅是查询语句,查询的时候还是从原表读取数据,可以 将普通视图理解为是个子查询。物化视图则是把查询的结果根据相应的引擎存入到了磁盘 或内存中,对数据重新进行了组织,你可以理解物化视图是完全的一张新表。
6.1.2 优缺点
优点:查询速度快,要是把物化视图这些规则全部写好,它比原数据查询快了很多,总 的行数少了,因为都预计算好了。缺点:它的本质是一个流式数据的使用场景,是累加式的技术,所以要用历史数据做去 重、去核这样的分析,在物化视图里面是不太好用的。在某些场景的使用也是有限的。而且 如果一张表加了好多物化视图,在写这张表的时候,就会消耗很多机器的资源,比如数据带 宽占满、存储一下子增加了很多。
6.1.3 基本语法
也是 create 语法,会创建一个隐藏的目标表来保存视图数据。也可以 TO 表名,保存到 一张显式的表。没有加 TO 表名,表名默认就是 .inner.物化视图名
CREATE [MATERIALIZED] VIEW [IF NOT EXISTS] [db.]table_name [TO[db.]name]
[ENGINE = engine] [POPULATE] AS SELECT ...
1)创建物化视图的限制
1.必须指定物化视图的 engine 用于数据存储
2.TO [db].[table]语法的时候,不得使用 POPULATE。
3.查询语句(select)可以包含下面的子句:DISTINCT, GROUP BY, ORDER BY, LIMIT…
4.物化视图的 alter 操作有些限制,操作起来不大方便。
5.若物化视图的定义使用了 TO [db.]name 子语句,则可以将目标表的视图 卸载 DETACH 再装载 ATTACH
2)物化视图的数据更新
(1)物化视图创建好之后,若源表被写入新数据则物化视图也会同步更新
(2)POPULATE 关键字决定了物化视图的更新策略:
◼ 若有 POPULATE 则在创建视图的过程会将源表已经存在的数据一并导入,类似于 create table ... as
◼ 若无 POPULATE 则物化视图在创建之后没有数据,只会在创建只有同步之后写入 源表的数据
◼ clickhouse 官方并不推荐使用 POPULATE,因为在创建物化视图的过程中同时写入 的数据不能被插入物化视图。
(3)物化视图不支持同步删除,若源表的数据不存在(删除了)则物化视图的数据仍
然保留
(4)物化视图是一种特殊的数据表,可以用 show tables 查看
(5)物化视图数据的删除:
(6)物化视图的删除:
6.2 案例实操
对于一些确定的数据模型,可将统计指标通过物化视图的方式进行构建,这样可避免查 询时重复计算的过程,物化视图会在有新数据插入时进行更新 。
6.2.1 准备测试用表和数据
1)建表
CREATE TABLE hits_test
(
EventDate Date,
CounterID UInt32,
UserID UInt64,
URL String,
Income UInt8
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192;
2)导入一些数据
INSERT INTO hits_test
SELECT
EventDate,
CounterID,
UserID,
URL,
Income
FROM hits_v1
limit 10000;
6.2.2 创建物化视图
1)建表
CREATE MATERIALIZED VIEW hits_mv
ENGINE=SummingMergeTree
PARTITION BY toYYYYMM(EventDate) ORDER BY (EventDate, intHash32(UserID))
AS SELECT
UserID,
EventDate,
count(URL) as ClickCount,
sum(Income) AS IncomeSum
FROM hits_test
WHERE EventDate >= '2014-03-20'
GROUP BY UserID,EventDate;
##或者可以用下列语法,表 A 可以是一张 mergetree 表
CREATE MATERIALIZED VIEW 物化视图名 TO 表 A
AS SELECT FROM 表 B;
#不建议添加 populate 关键字进行全量更新
6.3.3 导入增量数据
INSERT INTO hits_test
SELECT
EventDate,
CounterID,
UserID,
URL,
Income
FROM hits_v1
WHERE EventDate >= '2014-03-23';
6.3.4 导入历史数据
INSERT INTO hits_mv
SELECT
UserID,
EventDate,
count(URL) as ClickCount,
sum(Income) AS IncomeSum
FROM hits_test
WHERE EventDate = '2014-03-20'
GROUP BY UserID,EventDate;
第 7 章 常见问题排查
7.1 分布式 DDL 某数据节点的副本不执行
(1)问题:使用分布式 ddl 执行命令 create table on cluster xxxx 某个节点上没有创建 表,但是 client 返回正常,查看日志有如下报错。
<Error> xxx.xxx: Retrying createReplica(), because some other replicas
were created at the same time
(2)解决办法:重启该不执行的节点。
7.2 数据副本表和数据不一致
(1)问题:由于某个数据节点副本异常,导致两数据副本表不一致,某个数据副本缺 少表,需要将两个数据副本调整一致。
(2)解决办法:在缺少表的数据副本节点上创建缺少的表,创建为本地表,表结构可以在其他数据副本 通过 show crete table xxxx 获取。表结构创建后,clickhouse 会自动从其他副本同步该表数据,验证数据量是否一致即可。
7.3 副本节点全量恢复
(1)问题:某个数据副本异常无法启动,需要重新搭建副本。
(2)解决办法:清空异常副本节点的 metadata 和 data 目录。从另一个正常副本将 metadata 目录拷贝过来(这一步之后可以启动数据库,但是只有 表结构没有数据)。执行 sudo -u clickhouse touch /data/clickhouse/flags/force_restore_data 启动数据库。
7.4 数据副本启动缺少 zk 表
(1)问题:某个数据副本表在 zk 上丢失数据,或者不存在,但是 metadata 元数据里 存在,导致启动异常,报错:
(2)解决办法:metadata 中移除该表的结构文件,如果多个表报错都移除 mv metadata/xxxxxx/xxxxxxxx.sql /tmp/ 启动数据库 手工创建缺少的表,表结构从其他节点 show create table 获取。创建后会自动同步数据,验证数据是否一致。
7.5 ZK table replicas 数据未删除,导致重建表报错
(1)问题:重建表过程中,先使用 drop table xxx on cluster xxx ,各节点在 clickhouse 上 table 已物理删除,但是 zk 里面针对某个 clickhouse 节点的 table meta 信息未被删除(低概 率事件),因 zk 里仍存在该表的 meta 信息,导致再次创建该表 create table xxx on cluster, 该 节点无法创建表(其他节点创建表成功),
报错:Replica /clickhouse/tables/01-03/xxxxxx/xxx/replicas/xxx already exists..
(2)解决办法:从其他数据副本 cp 该 table 的 metadata sql 过来. 重启节点。
7.6 Clickhouse 节点意外关闭
(1)问题:模拟其中一个节点意外宕机,在大量 insert 数据的情况下,关闭某个节点。 (2)现象:数据写入不受影响、数据查询不受影响、建表 DDL 执行到异常节点会卡住, 报错:Code: 159. DB::Exception: Received from localhost:9000. DB::Exception: Watching task /clickhouse/task_queue/ddl/query-0000565925 is executing longer than distributed_ddl_task_timeout (=180) seconds. There are 1 unfinished hosts (0 of them are currently active), they are going to execute the query in background. (3)解决办法:启动异常节点,期间其他副本写入数据会自动同步过来,其他副本的 建表 DDL 也会同步。
7.7 其他问题参考
https://help.aliyun.com/document_detail/162815.html?spm=a2c4g.11186623.6.652.312e7 9bd17U8IO
有一起学习Clickhouse的大佬可以加我公众号联系我们,一起学习,多多提宝贵意见。。。