数据资产管理作为规划、控制、提供数据和信息资产的一组业务职能,其概念已经被大众所熟知。而随着企业对AI技术应用的日趋深入,在面对多样的AI应用场景下,企业内部会产生大量由各类算法框架训练生成的AI模型,对于模型开发和模型应用管理团队来说,如何管理这些AI模型,也是眼下亟待解决的问题。其实这些AI模型和企业数据一样,也是企业重要资产的一部分。对AI模型、算法进行有效的资产管理,有助于快速实现企业资源复用、降本增效的目标。为此,星环科技潜心研发了Sophon MLOps AI能力运营平台,致力于解决企业在机器学习模型开发及应用过程中遇到的痛点问题,提供标准化的AI能力运营服务。
各类模型训练框架太多?Sophon MLOps帮您统管
Sophon MLOps是星环科技基于云原生架构构建的企业级AI能力运营平台,聚焦于机器学习模型全生命周期中的模型管理、模型部署、模型监控预警、模型评估和模型迭代等关键环节。通过统一纳管、统一运维、统一应用、统一监控,赋予企业客户易用、高效且安全可靠的AI能力运营服务,协助客户规模化管理日益增长的机器学习模型,提升模型使用效率,降低模型集成管理成本,控制模型生产环境风险。Sophon MLOps针对企业AI运营的痛点,围绕企业AI模型接入、运营管理、持续训练的全生命周期,分别提供规模化集成管理、高效模型推理、模型监控预警、模型性能评估、隐私安全保障等功能,为企业的AI日常运营插上翅膀。●统一纳管多源异构的算法框架、模型文件和模型服务,支持XGBoost、MLflow、TensorFlow、PyTorch、Scikit-learn、Spark-MLlib等多种训练框架的模型,以及Sophon Base中通过可视化建模和编程式建模训练得到的模型;●实时监控模型服务的运行状态,控制模型生产环境风险,如集群资源利用率、吞吐量、使用度、响应时间和访问记录等;●规范化集成管理,统一部署大规模机器学习模型,大幅降低模型管理成本。●使用图形交互方式,流程化快速构建服务推理图,大幅节省了模型推理的配置成本;●支持自定义配置包含多模型的复杂推理逻辑,通过定义数据前后处理、路由分发、结果整合等操作的逻辑,灵活适配各类业务场景;●可视化一键部署模型应用,简化了模型部署的复杂流程。●零代码一键部署模型应用,仅需简单配置服务参数,即可快速生成服务API;●通过调用模型服务API接口,传入业务系统数据,实现模型实时预测支持自定义配置弹性伸缩策略,使用动态伸缩实现负载均衡;●支持多版本流量分配策略,具备灰度发布,A/B测试能力,有助于选出最佳效果的模型;●充分支持按需分配推理图各节点的资源使用量,包括CPU、GPU和内存等。●实时监控模型服务的运行状态,控制模型生产环境风险;●对比模型预测结果与线下真实数据,自动生成多维度性能评估指标的模型评估报告,为迭代优化模型提供重要参考依据。●从安全维度出发,通过Transwarp Guardian和Manager提供多种用户权限控制,满足不同团队、不同用户角色层级对集群环境、资源,以及系统功能的限制需求;●保障用户间私密数据(如数据集、模型文件等)的信息隔离;●模型部署环节的关键节点自动触发审批流程,避免服务资源浪费。在金融科技行业,随着监管政策的不断收紧,银保监会于20年7月正式出台了《商业银行互联网贷款管理暂行办法》⸺要求商业银行落实模型从开发测试、评审、监测到退出的全生命周期的风险管理。因此,为满足监管合规要求,同时提升行内风险模型的管理效率,该行要求对模型全生命周期进行统一管理。同时,随着行内业务的持续发展,逐渐积累了大量由各类算法框架生成的异构AI模型,且大多分散在不同的业务部门。如何兼容不同类型的模型文件,并统一纳管行内模型资产,成为了当前的重要挑战。而在部署应用模型时,需要配置大量的参数代码,且各部门之间的部署方式缺乏统一的流程,导致模型部署周期过长,配置成本增高的同时,模型应用的敏捷性价值反而降低了。针对以上痛点,该股份制银行使用Sophon MLOps搭建了全行统一的AI模型管理平台,快速接入行内积累的由不同框架或平台,训练生成的大量模型文件,规模化集成管理模型资产。平台支持使用标准化流程,统一构建模型推理逻辑,并支持零代码一键部署模型应用;可基于云原生基础架构,实现对模型应用的统一运维;平台还提供持续监控所有已上线的模型应用的功能,并评估模型预测性能,确保结果准确且稳定;同时为模型退出或迭代优化,提供重要参考。1.异构模型管理:成功解决了该股份制银行异构模型的管理问题,集成了全行多种算法框架生成的数百个机器学习模型;
2. 效率与成本的双收:银行部署模型应用的平均时间由1.5天降至0.5小时,部署效率提升71倍;同时,配置成本降低近80%;3. 强大的吞吐能力:同时支撑银行上百个的模型的在线预测服务,单条数据实现毫秒级响应;4. 加速模型迭代:打通了行方AI模型的全生命周期流程,使模型的平均迭代周期由1月降至1周。1.【技术】如何解决AI落地难题,构建统一协作的企业级AI平台
2.【技术】星环科技知识图谱落地实践,助力金融行业业务创新
3.【实践】精准营销难?Sophon Base手把手教你从建模到上架
4.【案例】消除隐患,基于电力大数据的群租房智能分析
5.【产品】星环科技Sophon Edge边缘计算平台持续赋能千家万业
-扫码关注-