35. 流动图绘制
清除当前环境中的变量
rm(list=ls())
设置工作目录
setwd("C:/Users/Dell/Desktop/R_Plots/35streamgraph/")
安装并加载所需的R包
# 安装streamgraph包
#devtools::install_github("hrbrmstr/streamgraph")
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(streamgraph)
## Loading required package: htmlwidgets
## Loading required package: htmltools
构建示例数据
data <- data.frame(
year=rep(seq(1990,2016) , each=10),
name=rep(letters[1:10] , 27),
value=sample( seq(0,1,0.0001) , 270)
)
# 查看示例数据
head(data)
## year name value
## 1 1990 a 0.2709
## 2 1990 b 0.1812
## 3 1990 c 0.2304
## 4 1990 d 0.0452
## 5 1990 e 0.4080
## 6 1990 f 0.0464
使用streamgraph包绘制流动图
# 基础绘图,需要提供三列变量
# 默认interactive=T,绘制可交互式图
streamgraph(data, key="name", value="value", date="year")
# 设置图片的高度和宽度,interactive = F绘制静态图
pp <- streamgraph(data, key="name", value="value", date="year",
height="600px", width="1000px",interactive = F)
pp
# 指定offset参数设置纵坐标偏移模式,默认offset = "silhouette"
streamgraph(data, key="name", value="value", date="year",
offset = "silhouette", interactive = F)
streamgraph(data, key="name", value="value", date="year",
offset = "wiggle", interactive = F)
streamgraph(data, key="name", value="value", date="year",
offset = "expand", interactive = F)
streamgraph(data, key="name", value="value", date="year",
offset = "zero", interactive = F)
# 指定interpolate参数设置绘图类型,默认interpolate = "cardinal"
streamgraph(data, key="name", value="value", date="year",
interpolate = "cardinal", interactive = F)
streamgraph(data, key="name", value="value", date="year",
interpolate = "linear", interactive = F)
streamgraph(data, key="name", value="value", date="year",
interpolate = "step", interactive = F)
streamgraph(data, key="name", value="value", date="year",
interpolate = "basis", interactive = F)
streamgraph(data, key="name", value="value", date="year",
interpolate = "monotone", interactive = F)
# 更改绘图颜色
# Graph 1: choose a RColorBrewer palette -> continuous
p1 <- streamgraph(data, key="name", value="value", date="year") %>%
sg_fill_brewer("Blues")
p1
# Graph 2: choose a RColorBrewer palette -> categorical
p2 <- streamgraph(data, key="name", value="value", date="year") %>%
sg_fill_brewer("Pastel1")
p2
# Graph 3: choose color manually with number, color name, rgb ...
p3 <- streamgraph(data, key="name", value="value", date="year") %>%
sg_fill_manual(c(1:10))
p3
sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.936
## [2] LC_CTYPE=Chinese (Simplified)_China.936
## [3] LC_MONETARY=Chinese (Simplified)_China.936
## [4] LC_NUMERIC=C
## [5] LC_TIME=Chinese (Simplified)_China.936
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] streamgraph_0.7 htmltools_0.3.6 htmlwidgets_1.3 dplyr_1.0.2
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.5 knitr_1.23 magrittr_1.5 tidyselect_1.1.0
## [5] lattice_0.20-38 R6_2.4.0 rlang_0.4.7 stringr_1.4.0
## [9] tools_3.6.0 xts_0.12.1 grid_3.6.0 xfun_0.8
## [13] ellipsis_0.2.0.1 yaml_2.2.0 digest_0.6.20 tibble_2.1.3
## [17] lifecycle_0.2.0 crayon_1.3.4 tidyr_1.1.2 purrr_0.3.2
## [21] vctrs_0.3.2 glue_1.4.2 evaluate_0.14 rmarkdown_1.13
## [25] stringi_1.4.3 compiler_3.6.0 pillar_1.4.2 generics_0.0.2
## [29] jsonlite_1.6 pkgconfig_2.0.2 zoo_1.8-6
参考来源:https://hiplot.com.cn/books-static/r-graph-gallery/streamgraph.html
END
文章转载自bioinfomics,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。