暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

阿语python4-2 美多商城v5.0商品-商品搜索之第6.5.1节全文检索方案Elasticsearch

阿语python 2021-05-15
292

全文检索方案Elasticsearch

1. 全文检索和搜索引擎原理

商品搜索需求

  • 当用户在搜索框输入商品关键字后,我们要为用户提供相关的商品搜索结果。

商品搜索实现

  • 可以选择使用模糊查询like
    关键字实现。

  • 但是 like 关键字的效率极低。

  • 查询需要在多个字段中进行,使用 like 关键字也不方便。

全文检索方案

  • 我们引入全文检索的方案来实现商品搜索。

  • 全文检索即在指定的任意字段中进行检索查询。

  • 全文检索方案需要配合搜索引擎来实现。

搜索引擎原理

  • 搜索引擎进行全文检索时,会对数据库中的数据进行一遍预处理,单独建立起一份索引结构数据

  • 索引结构数据类似新华字典的索引检索页,里面包含了关键词与词条的对应关系,并记录词条的位置。

  • 搜索引擎进行全文检索时,将关键字在索引数据中进行快速对比查找,进而找到数据的真实存储位置


结论:

  • 搜索引擎建立索引结构数据,类似新华字典的索引检索页,全文检索时,关键字在索引数据中进行快速对比查找,进而找到数据的真实存储位置。

2. Elasticsearch介绍

实现全文检索的搜索引擎,首选的是Elasticsearch

  • Elasticsearch 是用 Java 实现的,开源的搜索引擎。

  • 它可以快速地储存、搜索和分析海量数据。维基百科、Stack Overflow、Github等都采用它。

  • Elasticsearch 的底层是开源库 Lucene。但是,没法直接使用 Lucene,必须自己写代码去调用它的接口。

分词说明

  • 搜索引擎在对数据构建索引时,需要进行分词处理。

  • 分词是指将一句话拆解成多个单字 或 ,这些字或词便是这句话的关键词。

  • 比如:我是中国人

    • 分词后:




      中国
      等等都可以是这句话的关键字。

  • Elasticsearch 不支持对中文进行分词建立索引,需要配合扩展elasticsearch-analysis-ik
    来实现中文分词处理。

3. 使用Docker安装Elasticsearch

1.获取Elasticsearch-ik镜像

# 从仓库拉取镜像
$ sudo docker image pull delron/elasticsearch-ik:2.4.6-1.0
# 解压教学资料中本地镜像
$ sudo docker load -i elasticsearch-ik-2.4.6_docker.tar

2.配置Elasticsearch-ik

  • 将教学资料中的elasticsearc-2.4.6
    目录拷贝到home
    目录下。

  • 修改/home/python/elasticsearc-2.4.6/config/elasticsearch.yml
    第54行。

  • 更改ip地址为本机真实ip地址。


3.使用Docker运行Elasticsearch-ik

$ sudo docker run -dti --name=elasticsearch --network=host -v /home/python/elasticsearch-2.4.6/config:/usr/share/elasticsearch/config delron/elasticsearch-ik:2.4.6-1.0



文章转载自阿语python,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论