暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

Linux驱动分析之I2C设备

嵌入式软件开发交流 2019-10-15
568

前言

    i2c控制器的驱动分析完之后,接下来来分析i2c设备驱动,我们以HYM8563驱动作为分析对象。


I2C设备驱动分析


内核:4.20

芯片:HYM8563  RTC

下面的代码分析主要都在注释中,会按照驱动中函数的执行顺序分析。


(1) 加载和卸载函数

static const struct i2c_device_id hym8563_id[] = {
{ "hym8563", 0 },
{},
};
MODULE_DEVICE_TABLE(i2c, hym8563_id);


static const struct of_device_id hym8563_dt_idtable[] = {
{ .compatible = "haoyu,hym8563" },
{},
};
MODULE_DEVICE_TABLE(of, hym8563_dt_idtable);


static struct i2c_driver hym8563_driver = {
.driver = {
.name = "rtc-hym8563",
.pm = &hym8563_pm_ops,
.of_match_table = hym8563_dt_idtable, //dt匹配表
},
.probe = hym8563_probe,
.id_table = hym8563_id,// id表
};
// 封住了module_init()和module_exit()
// 里面会调用i2c_register_driver(hym8563_driver)
// 和i2c_del_driver(hym8563_driver)
module_i2c_driver(hym8563_driver);
复制

(2) probe()函数

static int hym8563_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct hym8563 *hym8563;
int ret;
//申请内存空间
hym8563 = devm_kzalloc(&client->dev, sizeof(*hym8563), GFP_KERNEL);
if (!hym8563)
return -ENOMEM;
//保存数据
hym8563->client = client;
i2c_set_clientdata(client, hym8563);
//HYM8563初始化
ret = hym8563_init_device(client);


//申请中断
if (client->irq > 0) {
ret = devm_request_threaded_irq(&client->dev, client->irq,
NULL, hym8563_irq,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
client->name, hym8563);
}


//检查一下模块是否正常运行
ret = i2c_smbus_read_byte_data(client, HYM8563_SEC);
if (ret < 0)
return ret;
//VL位用来标识模块是否正常工作
hym8563->valid = !(ret & HYM8563_SEC_VL);
dev_dbg(&client->dev, "rtc information is %s\n",
hym8563->valid ? "valid" : "invalid");
//注册RTC设备
hym8563->rtc = devm_rtc_device_register(&client->dev, client->name,
&hym8563_rtc_ops, THIS_MODULE);


/* the hym8563 alarm only supports a minute accuracy */
hym8563->rtc->uie_unsupported = 1;


#ifdef CONFIG_COMMON_CLK
//HYM8563可以作为时钟源
hym8563_clkout_register_clk(hym8563);
#endif


return 0;
}
复制

上面删掉了一些判断和Log信息。

(3) HYM8563初始化

//查看datasheet对8563进行初始化,对寄存器进行设置
static int hym8563_init_device(struct i2c_client *client)
{
int ret;


/* Clear stop flag if present */
//向寄存器中写入值
ret = i2c_smbus_write_byte_data(client, HYM8563_CTL1, 0);
if (ret < 0)
return ret;
//读取寄存器的值
ret = i2c_smbus_read_byte_data(client, HYM8563_CTL2);
if (ret < 0)
return ret;


/* Disable alarm and timer interrupts */
ret &= ~HYM8563_CTL2_AIE;
ret &= ~HYM8563_CTL2_TIE;


/* Clear any pending alarm and timer flags */
if (ret & HYM8563_CTL2_AF)
ret &= ~HYM8563_CTL2_AF;


if (ret & HYM8563_CTL2_TF)
ret &= ~HYM8563_CTL2_TF;


ret &= ~HYM8563_CTL2_TI_TP;
//将修改后的值写入寄存器
return i2c_smbus_write_byte_data(client, HYM8563_CTL2, ret);
}
复制


(4) HYM8563操作函数

static int hym8563_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct i2c_client *client = to_i2c_client(dev);
struct hym8563 *hym8563 = i2c_get_clientdata(client);
u8 buf[7];
int ret;


if (!hym8563->valid) {
dev_warn(&client->dev, "no valid clock/calendar values available\n");
return -EPERM;
}
//读取寄存器值, 连续读取7个寄存器
ret = i2c_smbus_read_i2c_block_data(client, HYM8563_SEC, 7, buf);
//bcd数转成2进制
tm->tm_sec = bcd2bin(buf[0] & HYM8563_SEC_MASK);
tm->tm_min = bcd2bin(buf[1] & HYM8563_MIN_MASK);
tm->tm_hour = bcd2bin(buf[2] & HYM8563_HOUR_MASK);
tm->tm_mday = bcd2bin(buf[3] & HYM8563_DAY_MASK);
tm->tm_wday = bcd2bin(buf[4] & HYM8563_WEEKDAY_MASK); /* 0 = Sun */
tm->tm_mon = bcd2bin(buf[5] & HYM8563_MONTH_MASK) - 1; /* 0 = Jan */
tm->tm_year = bcd2bin(buf[6]) + 100;


return 0;
}


static const struct rtc_class_ops hym8563_rtc_ops = {
.read_time = hym8563_rtc_read_time,
.set_time = hym8563_rtc_set_time,
.alarm_irq_enable = hym8563_rtc_alarm_irq_enable,
.read_alarm = hym8563_rtc_read_alarm,
.set_alarm = hym8563_rtc_set_alarm,
};
复制

其他的读写函数都是去通过I2C去读取寄存器的值。

上面的调用关系图显示了设备与控制器之间的关系。


总结

    大部分的I2C设备驱动框架都差不多,大家可以配合下面两篇文章一起看。这样更能理解。虽然分析代码是一种比较无聊的事情,但是可以通过分析来理解具体驱动框架和学习一些好的编码风格。


Linux驱动分析之I2C控制器

Linux驱动分析之I2C驱动架构


长按识别图中二维码关注

文章转载自嵌入式软件开发交流,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论