1.数据中台的定义
数据中台是对既有/新建信息化系统业务与数据的沉淀,是实现数据赋能新业务、新应用的中间、支撑性平台。
数据中台需求的出现,是企业数字化转型的一个标志性的转折,数据中台成为热点,标志着,“在企业信息化或者数字化的历史上,数据从来没有距离业务这么近,数字化转型正从流程优先走向数据优先”。要想从根本上理解数据中台是什么,要认识到数据和软件的关系。
信息化和数字化的本质区别是:
“信息化是用软件工程技术局部支撑和改良业务,数字化是用数字化技术重塑和转型业务本身”,而数据则是构成数字化业务世界的原子材料。
数据从应用诞生的那一天开始就存在,但是,数据并不是第一天就被存储和利用的,应用和数据的发展是不同步的,数据的地位是不断演进,越来越重要的,经历了以下五个阶段:
阶段1:数据没有被存储
早期的应用,是为了解决某一个单点的问题,比如计算器,计算过程的数据是不被存储的,但是计算的过程中,数据是客观存在的。这个阶段,数据是应用的过程产物,产生即丢弃,并不被存储。
阶段2:只有少量结果数据被存储和查询
当应用的功能丰富后,软件从解决单点问题的工具演进到处理一类业务问题,从而有了多个功能模块。典型的例子是办公自动化系统、进销存系统,这个时候少量的结果数据被存储起来,并且也有了对数据的查询、统计的需求。这个时候,数据是关键业务的记录。
阶段3:数据仓库出现,数据被大量存储
接着,企业级管理系统比如ERP、MES、CRM的出现,企业管理层需要跨条线,跨职能了解和掌握整体的经营情况,从而根据这些数据来帮助企业做决策。这个时候商务智能,传统数据仓库系统应运而生的出现了,数据在企业管理中的作用开始显现。但是这个时候的数据距离业务很远,为业务提供支持的速度很慢,往往是先有了业务想法和需求,先有“领导要看什么”,然后在去采集和处理对应的数据做出什么报表给到领导
阶段4:数据的深入价值开始被挖掘
传统数据仓库还是基于流程的,原因是数据仓库的需求还是来自于预先的设计,来自于固有流程数据的整合。而这个时候,企业的业务已经有了一定的复杂度,企业管理人员希望从数据当中发现一些隐藏的未知的价值和规律。而这个时候预定义的查询条件,预定义的业务主题已经不能满足这样的需求,所以在数据仓库基础上,产生了数据挖掘的技术,业务从数据中发现市场的规律,洞察客户的兴趣,产生一些人们不知道的信息。这个阶段在市场营销、生产调度等影响因子较多,动态性较大的业务领域,数据的重要性愈加凸显。
以上四个阶段,基本上都处于“业务数据化”的阶段
阶段5:业务数据化,数据成为企业核心资产
到了数字化时代,所有的一切都被数字化的技术所重构,而数据是构成数字化世界的基础。数据如同石油一样,成为新时代的资源,从数据当中挖掘价值,从数据当中去产生创新已经成为了所有企业的共识。这个时候,数据成为了企业的核心资产,所有的业务都被数据化。
在人工智能信息化时代,数据是流程的副产品,流程是预先设计好的,然后在设计好的流程中产生了数据。数据中台是数据挖掘的数据底座。