「目录」
数据清洗和准备
7.1 => 处理缺失数据 Handing Missing Data 7.2 => 数据转换 Data Transformation 7.3 => 字符串操作 String Manipulation

处理缺失数据
在许多数据分析工作中,缺失数据是经常发生的,也许是不存在,也许是没有观察到。pandas作者说,pandas的目标之一就是尽量轻松的处理缺失数据。
对于数值数据,pandas使用浮点值NaN(Not a Number)表示缺失数据。
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: string_data = pd.Series(['red', 'orange', np.nan, 'green'])
In [4]: string_data
Out[4]:
0 red
1 orange
2 NaN
3 green
dtype: object
isnull方法可以检测缺失值:
In [5]: string_data.isnull()
Out[5]:
0 False
1 False
2 True
3 False
dtype: bool
滤除缺失数据
过滤掉缺失数据的方法有很多,比如dropna。
对于Series,dropna返回一个仅含非空数据和索引值的Series:
In [6]: from numpy import nan as NA
In [7]: data = pd.Series([1, NA, 3.5, NA, 7])
In [8]: data.dropna()
Out[8]:
0 1.0
2 3.5
4 7.0
dtype: float64
布尔索引也可以达到同样效果:
In [9]: data[data.notnull()]
Out[9]:
0 1.0
2 3.5
4 7.0
dtype: float64
对于DataFrame,dropna默认丢弃任何含有缺失值的行:
In [10]: data = pd.DataFrame([[1., 6.5, 3.], [1., NA, NA], [NA, NA, NA], [NA, 6.5, 3.0]])
In [11]: cleaned = data.dropna()
In [12]: data
Out[12]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
In [13]: cleaned
Out[13]:
0 1 2
0 1.0 6.5 3.0
传入how = 'all'将只丢弃全为NaN的行:
In [14]: data.dropna(how='all')
Out[14]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
3 NaN 6.5 3.0
用这种方式丢弃列,只需传入axis=1:
In [15]: data[4] = NA
In [16]: data
Out[16]:
0 1 2 4
0 1.0 6.5 3.0 NaN
1 1.0 NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN 6.5 3.0 NaN
In [17]: data.dropna(axis=1, how='all')
Out[17]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0
另一种过滤掉数据的方式是传入thresh参数,指定保留一定数量的数据。比如下面这个例子,通过传入thresh=2,就过滤掉了第二行和第三行(这两行非NaN的数据不足2个)。
In [18]: data
Out[18]:
0 1 2 4
0 1.0 6.5 3.0 NaN
1 1.0 NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN 6.5 3.0 NaN
In [19]: data.dropna(thresh=2)
Out[19]:
0 1 2 4
0 1.0 6.5 3.0 NaN
3 NaN 6.5 3.0 NaN
填充缺失数据
有时候你可能并不想滤掉缺失的数据,而是想要以某种方式填补这些空洞(缺失值)。大多数情况下,可以使用fillna方法,传入一个常数来替代那些缺失值。
In [20]: data
Out[20]:
0 1 2 4
0 1.0 6.5 3.0 NaN
1 1.0 NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN 6.5 3.0 NaN
In [21]: data.fillna(0)
Out[21]:
0 1 2 4
0 1.0 6.5 3.0 0.0
1 1.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 6.5 3.0 0.0
fillna方法会返回一个新对象,也可以通过传入inplace参数就地改变:
In [23]: _ = data.fillna(0, inplace=True)
In [24]: data
Out[24]:
0 1 2 4
0 1.0 6.5 3.0 0.0
1 1.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 6.5 3.0 0.0
若将一个字典传入fillna,我们可以对每一列使用不同的填充值。
先随便创建一个有缺失值的DataFrame:
In [26]: df = pd.DataFrame(np.random.randn(7,3), columns = ['A', 'B', 'C'])
In [27]: df
Out[27]:
A B C
0 0.009956 -0.851042 -0.789721
1 0.589170 -0.328310 -0.094439
2 0.644725 -0.039017 1.176601
3 -0.197240 1.117631 -0.851569
4 0.286496 0.186569 0.416580
5 -2.093723 0.007716 -0.053022
6 0.724030 -0.379992 -1.624782
In [28]: df.iloc[:4,1] = NA
In [29]: df.iloc[:2,2] = NA
In [30]: df
Out[30]:
A B C
0 0.009956 NaN NaN
1 0.589170 NaN NaN
2 0.644725 NaN 1.176601
3 -0.197240 NaN -0.851569
4 0.286496 0.186569 0.416580
5 -2.093723 0.007716 -0.053022
6 0.724030 -0.379992 -1.624782
传入字典,B列的缺失值用666替代,而C列的缺失值用6666替代:
In [32]: df.fillna({'B':666, 'C':6666})
Out[32]:
A B C
0 0.009956 666.000000 6666.000000
1 0.589170 666.000000 6666.000000
2 0.644725 666.000000 1.176601
3 -0.197240 666.000000 -0.851569
4 0.286496 0.186569 0.416580
5 -2.093723 0.007716 -0.053022
6 0.724030 -0.379992 -1.624782
对reindex有效的那些插值方法也可以用在fillna:
In [33]: df = pd.DataFrame(np.random.randn(6, 3))
In [34]: df.iloc[2:, 1] = NA
In [35]: df.iloc[4:, 2] = NA
In [36]: df
Out[36]:
0 1 2
0 -0.104274 -0.132962 0.125710
1 0.283795 -0.333354 1.690303
2 0.461812 NaN 1.148663
3 -0.742873 NaN 0.595477
4 -0.655055 NaN NaN
5 -0.972139 NaN NaN
In [37]: df.fillna(method='ffill')
Out[37]:
0 1 2
0 -0.104274 -0.132962 0.125710
1 0.283795 -0.333354 1.690303
2 0.461812 -0.333354 1.148663
3 -0.742873 -0.333354 0.595477
4 -0.655055 -0.333354 0.595477
5 -0.972139 -0.333354 0.595477
In [38]: df.fillna(method='ffill', limit=2)
Out[38]:
0 1 2
0 -0.104274 -0.132962 0.125710
1 0.283795 -0.333354 1.690303
2 0.461812 -0.333354 1.148663
3 -0.742873 -0.333354 0.595477
4 -0.655055 NaN 0.595477
5 -0.972139 NaN 0.595477
最后我们也可以稍微更有创意的使用fillna方法,比如用平均值来填充缺失值:
In [40]: data = pd.Series([1., NA, 3.5, NA, 7])
In [41]: data.fillna(data.mean())
Out[41]:
0 1.000000
1 3.833333
2 3.500000
3 3.833333
4 7.000000
dtype: float64
To be continue...

往期回顾



stay hungry, stay foolish.
记得点在看啦

文章转载自Yuan的学习笔记,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。




