目录
前言
DESC v$iostat_function
Name Null? Type
----------------------------------------------------------------- -------- --------------------------------------------
FUNCTION_ID NUMBER
FUNCTION_NAME VARCHAR2(18)
SMALL_READ_MEGABYTES NUMBER
SMALL_WRITE_MEGABYTES NUMBER
LARGE_READ_MEGABYTES NUMBER
LARGE_WRITE_MEGABYTES NUMBER
SMALL_READ_REQS NUMBER
SMALL_WRITE_REQS NUMBER
LARGE_READ_REQS NUMBER
LARGE_WRITE_REQS NUMBER
NUMBER_OF_WAITS NUMBER
WAIT_TIME NUMBER
其中,我们使用SQL语句查询V$IOSTAT_FUNCTION中的FUNCTION_ID和FUNCTION_NAME后发现Oracle的IO按FUNCTION分类总共有14个不同的类别,请看下面的查询语句和结果:
SET PAGESIZE 30
COLUMN function_name FOR a18
SELECT function_id, function_name FROM v$iostat_function ORDER BY 1;
FUNCTION_ID FUNCTION_NAME
----------- ------------------------------------
0 RMAN
1 DBWR
2 LGWR
3 ARCH
4 XDB
5 Streams AQ
6 Data Pump
7 Recovery
8 Buffer Cache Reads
9 Direct Reads
10 Direct Writes
11 Smart Scan
12 Archive Manager
13 Others
14 rows selected.
因此,我们需要从两个维度(最近1分钟和最近1小时)可视化我们所提到的14个类别(在图表中也可将其称作“图例”)的IO(IO分为MBPS和IOPS两类,即每秒的IO读写容量和每秒的IO读写请求)情况。其中,最近1分钟的数据保存在动态性能视图V$IOFUNCMETRIC里,最近1小时的数据保存在动态性能视图V$IOFUNCMETRIC_HISTORY上。所以两个维度和两个IO类别的互相组合,我们将要使用四个SQL查询来实现我们的业务需求。
将Oracle数据库的MBPS&IOPS By Function查询导入Vertica数据库
- 将Oracle数据库的MBPS&IOPS By Function查询保存为CSV文件
- 将所有CSV文件上传到Vertica服务器的/home/dbadmin目录下
- 用vsql客户端命令连接到Vertica数据库
- 在Vertica数据库中创建相关的MBPS&IOPS By Function表
- 使用COPY命令将CSV文件导入刚创建的表中
将Oracle数据库的MBPS&IOPS By Function查询保存为CSV文件
和前两篇文章的方法相同,我们在SQL Develooper中分别以脚本方式运行下面的四个SQL查询并将其保存为CSV文件。具体的操作步骤有些繁琐,所以这里只贴出SQL代码,依次(首先,最近1分钟和最近1小时的MBPS;其次,最近1分钟和最近1小时的IOPS)如下所示:
-- Converting rows to columns Based on I/O Megabytes per Second in Last 1 Minute.
-- Vertical Axis Name: MB Per Sec
SET FEEDBACK off;
SET SQLFORMAT csv;
SET LINESIZE 200
SET PAGESIZE 10
COLUMN sample_time FORMAT a11
COLUMN function_name FORMAT a18
COLUMN io_mbps FORMAT 999,999,999.999
ALTER SESSION SET nls_date_format = 'yyyy-mm-dd hh24:mi:ss';
WITH ifm AS
(
SELECT TO_CHAR(end_time, 'yyyy-mm-dd hh24:mi:ss') sample_time
, function_name
, ROUND((small_read_mbps+small_write_mbps+large_read_mbps+large_write_mbps), 3) io_mbps
FROM v$iofuncmetric
)
SELECT * FROM ifm
PIVOT ( MAX(io_mbps)
FOR function_name IN
( 'Buffer Cache Reads' AS "Buffer Cache Reads"
, 'Direct Reads' AS "Direct Reads"
, 'Direct Writes' AS "Direct Writes"
, 'DBWR' AS "DBWR"
, 'LGWR' AS "LGWR"
, 'ARCH' AS "ARCH"
, 'RMAN' AS "RMAN"
, 'Recovery' AS "Recovery"
, 'Data Pump' AS "Data Pump"
, 'Streams AQ' AS "Streams AQ"
, 'XDB' AS "XDB"
, 'Others' AS "Others"
, 'Archive Manager' AS "Archive Manager"
, 'Smart Scan' AS "Smart Scan"
)
)
ORDER BY sample_time
;
-- Converting rows to columns Based on I/O Megabytes per Second in Last 1 Hour (interval by each minute).
-- Vertical Axis Name: MB Per Sec
SET FEEDBACK off;
SET SQLFORMAT csv;
SET LINESIZE 200
SET PAGESIZE 80
COLUMN sample_time FORMAT a11
COLUMN function_name FORMAT a18
COLUMN io_mbps FORMAT 999,999,999.999
ALTER SESSION SET nls_date_format = 'yyyy-mm-dd hh24:mi:ss';
WITH ifmh AS
(
SELECT TO_CHAR(end_time, 'yyyy-mm-dd hh24:mi:ss') sample_time
, function_name
, ROUND((small_read_mbps+small_write_mbps+large_read_mbps+large_write_mbps), 3) io_mbps
FROM v$iofuncmetric_history
)
SELECT * FROM ifmh
PIVOT ( MAX(io_mbps)
FOR function_name IN
( 'Buffer Cache Reads' AS "Buffer Cache Reads"
, 'Direct Reads' AS "Direct Reads"
, 'Direct Writes' AS "Direct Writes"
, 'DBWR' AS "DBWR"
, 'LGWR' AS "LGWR"
, 'ARCH' AS "ARCH"
, 'RMAN' AS "RMAN"
, 'Recovery' AS "Recovery"
, 'Data Pump' AS "Data Pump"
, 'Streams AQ' AS "Streams AQ"
, 'XDB' AS "XDB"
, 'Others' AS "Others"
, 'Archive Manager' AS "Archive Manager"
, 'Smart Scan' AS "Smart Scan"
)
)
ORDER BY sample_time
;
-- Converting rows to columns Based on I/O Requests per Second in Last 1 Minute.
-- Horizontal Axis Name: I/O Per Sec
SET FEEDBACK off;
SET SQLFORMAT csv;
SET LINESIZE 200
SET PAGESIZE 10
COLUMN sample_time FORMAT a11
COLUMN function_name FORMAT a18
COLUMN iops FORMAT 999,999,999.999
ALTER SESSION SET nls_date_format = 'yyyy-mm-dd hh24:mi:ss';
WITH ifm AS
(
SELECT TO_CHAR(end_time, 'yyyy-mm-dd hh24:mi:ss') sample_time
, function_name
, ROUND((small_read_iops+small_write_iops+large_read_iops+large_write_iops), 3) iops
FROM v$iofuncmetric
)
SELECT * FROM ifm
PIVOT ( MAX(iops)
FOR function_name IN
( 'Buffer Cache Reads' AS "Buffer Cache Reads"
, 'Direct Reads' AS "Direct Reads"
, 'Direct Writes' AS "Direct Writes"
, 'DBWR' AS "DBWR"
, 'LGWR' AS "LGWR"
, 'ARCH' AS "ARCH"
, 'RMAN' AS "RMAN"
, 'Recovery' AS "Recovery"
, 'Data Pump' AS "Data Pump"
, 'Streams AQ' AS "Streams AQ"
, 'XDB' AS "XDB"
, 'Others' AS "Others"
, 'Archive Manager' AS "Archive Manager"
, 'Smart Scan' AS "Smart Scan"
)
)
ORDER BY sample_time
;
-- Converting rows to columns Based on I/O Requests per Second in Last 1 Hour (interval by each minute).
-- Horizontal Axis Name: I/O Per Sec
SET FEEDBACK off;
SET SQLFORMAT csv;
SET LINESIZE 200
SET PAGESIZE 80
COLUMN sample_time FORMAT a11
COLUMN function_name FORMAT a18
COLUMN iops FORMAT 999,999,999.999
ALTER SESSION SET nls_date_format = 'yyyy-mm-dd hh24:mi:ss';
WITH ifmh AS
(
SELECT TO_CHAR(end_time, 'yyyy-mm-dd hh24:mi:ss') sample_time
, function_name
, ROUND((small_read_iops+small_write_iops+large_read_iops+large_write_iops), 3) iops
FROM v$iofuncmetric_history
)
SELECT * FROM ifmh
PIVOT ( MAX(iops)
FOR function_name IN
( 'Buffer Cache Reads' AS "Buffer Cache Reads"
, 'Direct Reads' AS "Direct Reads"
, 'Direct Writes' AS "Direct Writes"
, 'DBWR' AS "DBWR"
, 'LGWR' AS "LGWR"
, 'ARCH' AS "ARCH"
, 'RMAN' AS "RMAN"
, 'Recovery' AS "Recovery"
, 'Data Pump' AS "Data Pump"
, 'Streams AQ' AS "Streams AQ"
, 'XDB' AS "XDB"
, 'Others' AS "Others"
, 'Archive Manager' AS "Archive Manager"
, 'Smart Scan' AS "Smart Scan"
)
)
ORDER BY sample_time
;
由于CSV文件的内容过多,所以我把它们分别上传到了我的GitHub,您可以查看这4个文件:crtc_oracle_io_mbps_in_last_1_minute.csv,crtc_oracle_io_mbps_in_last_1_hour.csv,crtc_oracle_iops_in_last_1_minute.csv和crtc_oracle_iops_in_last_1_hour.csv。
将所有CSV文件上传到Vertica服务器的/home/dbadmin目录下
这里,省略具体的上传步骤和相关授权操作,最终的上传结果如下所示(用“<<==”标明):
[dbadmin@test ~]$ ls -lrht
total 184K
drwxr-xr-x 5 dbadmin verticadba 134 Dec 15 14:06 vdb_oracle_perf
......
-rw-r--r-- 1 dbadmin verticadba 225 Dec 23 10:54 crtc_oracle_io_mbps_in_last_1_minute.csv <<==
-rw-r--r-- 1 dbadmin verticadba 3.0K Dec 23 10:56 crtc_oracle_io_mbps_in_last_1_hour.csv <<==
-rw-r--r-- 1 dbadmin verticadba 233 Dec 23 10:57 crtc_oracle_iops_in_last_1_minute.csv <<==
-rw-r--r-- 1 dbadmin verticadba 3.6K Dec 23 10:59 crtc_oracle_iops_in_last_1_hour.csv <<==
用vsql客户端命令连接到Vertica数据库
用Linux命令su切换Vertica数据库服务器的root用户到dbadmin用户,然后用vsql命令进行连接,下面是具体的操作过程:
[root@test ~]# su - dbadmin
[dbadmin@test ~]$
[dbadmin@test ~]$ /opt/vertica/bin/vsql -h 127.0.0.1 vdb_oracle_perf dbadmin
Password:
Welcome to vsql, the Vertica Analytic Database interactive terminal.
Type: \h or \? for help with vsql commands
\g or terminate with semicolon to execute query
\q to quit
vdb_oracle_perf=>
在Vertica数据库中创建相关的MBPS&IOPS By Function表
在public的schema下,分别创建表crtc_oracle_io_mbps_in_last_1_minute,crtc_oracle_io_mbps_in_last_1_hour,crtc_oracle_iops_in_last_1_minute和crtc_oracle_iops_in_last_1_hour。
vdb_oracle_perf=>
vdb_oracle_perf=> CREATE TABLE public.crtc_oracle_io_mbps_in_last_1_minute
vdb_oracle_perf-> (sample_time TIMESTAMP,
vdb_oracle_perf(> buffer_cache_reads NUMBER(12,3),
vdb_oracle_perf(> direct_reads NUMBER(12,3),
vdb_oracle_perf(> direct_writes NUMBER(12,3),
vdb_oracle_perf(> dbwr NUMBER(12,3),
vdb_oracle_perf(> lgwr NUMBER(12,3),
vdb_oracle_perf(> arch NUMBER(12,3),
vdb_oracle_perf(> rman NUMBER(12,3),
vdb_oracle_perf(> recovery NUMBER(12,3),
vdb_oracle_perf(> data_pump NUMBER(12,3),
vdb_oracle_perf(> streams_aq NUMBER(12,3),
vdb_oracle_perf(> xdb NUMBER(12,3),
vdb_oracle_perf(> others NUMBER(12,3),
vdb_oracle_perf(> archive_manager NUMBER(12,3),
vdb_oracle_perf(> smart_scan NUMBER(12,3)
vdb_oracle_perf(> );
CREATE TABLE
vdb_oracle_perf=>
vdb_oracle_perf=>
vdb_oracle_perf=> CREATE TABLE public.crtc_oracle_io_mbps_in_last_1_hour
vdb_oracle_perf-> (sample_time TIMESTAMP,
vdb_oracle_perf(> buffer_cache_reads NUMBER(12,3),
vdb_oracle_perf(> direct_reads NUMBER(12,3),
vdb_oracle_perf(> direct_writes NUMBER(12,3),
vdb_oracle_perf(> dbwr NUMBER(12,3),
vdb_oracle_perf(> lgwr NUMBER(12,3),
vdb_oracle_perf(> arch NUMBER(12,3),
vdb_oracle_perf(> rman NUMBER(12,3),
vdb_oracle_perf(> recovery NUMBER(12,3),
vdb_oracle_perf(> data_pump NUMBER(12,3),
vdb_oracle_perf(> streams_aq NUMBER(12,3),
vdb_oracle_perf(> xdb NUMBER(12,3),
vdb_oracle_perf(> others NUMBER(12,3),
vdb_oracle_perf(> archive_manager NUMBER(12,3),
vdb_oracle_perf(> smart_scan NUMBER(12,3)
vdb_oracle_perf(> );
CREATE TABLE
vdb_oracle_perf=>
vdb_oracle_perf=>
vdb_oracle_perf=> CREATE TABLE public.crtc_oracle_iops_in_last_1_minute
vdb_oracle_perf-> (sample_time TIMESTAMP,
vdb_oracle_perf(> buffer_cache_reads NUMBER(12,3),
vdb_oracle_perf(> direct_reads NUMBER(12,3),
vdb_oracle_perf(> direct_writes NUMBER(12,3),
vdb_oracle_perf(> dbwr NUMBER(12,3),
vdb_oracle_perf(> lgwr NUMBER(12,3),
vdb_oracle_perf(> arch NUMBER(12,3),
vdb_oracle_perf(> rman NUMBER(12,3),
vdb_oracle_perf(> recovery NUMBER(12,3),
vdb_oracle_perf(> data_pump NUMBER(12,3),
vdb_oracle_perf(> streams_aq NUMBER(12,3),
vdb_oracle_perf(> xdb NUMBER(12,3),
vdb_oracle_perf(> others NUMBER(12,3),
vdb_oracle_perf(> archive_manager NUMBER(12,3),
vdb_oracle_perf(> smart_scan NUMBER(12,3)
vdb_oracle_perf(> );
CREATE TABLE
vdb_oracle_perf=>
vdb_oracle_perf=>
vdb_oracle_perf=> CREATE TABLE public.crtc_oracle_iops_in_last_1_hour
vdb_oracle_perf-> (sample_time TIMESTAMP,
vdb_oracle_perf(> buffer_cache_reads NUMBER(12,3),
vdb_oracle_perf(> direct_reads NUMBER(12,3),
vdb_oracle_perf(> direct_writes NUMBER(12,3),
vdb_oracle_perf(> dbwr NUMBER(12,3),
vdb_oracle_perf(> lgwr NUMBER(12,3),
vdb_oracle_perf(> arch NUMBER(12,3),
vdb_oracle_perf(> rman NUMBER(12,3),
vdb_oracle_perf(> recovery NUMBER(12,3),
vdb_oracle_perf(> data_pump NUMBER(12,3),
vdb_oracle_perf(> streams_aq NUMBER(12,3),
vdb_oracle_perf(> xdb NUMBER(12,3),
vdb_oracle_perf(> others NUMBER(12,3),
vdb_oracle_perf(> archive_manager NUMBER(12,3),
vdb_oracle_perf(> smart_scan NUMBER(12,3)
vdb_oracle_perf(> );
CREATE TABLE
vdb_oracle_perf=>
使用COPY命令将CSV文件导入刚创建的表中
在上一步操作中,我们已经创建成功了4个表。现在我们用COPY命令将上传到Vertica数据库服务器的4个CSV文件分别导入到那4个表中。操作步骤依次为:
vdb_oracle_perf=>
vdb_oracle_perf=> COPY public.crtc_oracle_io_mbps_in_last_1_minute FROM '/home/dbadmin/crtc_oracle_io_mbps_in_last_1_minute.csv' EXCEPTIONS '/home/dbadmin/imp_io_mbps_1.log' DELIMITER AS ',';
NOTICE 7850: In a multi-threaded load, rejected record data may be written to additional files
HINT: Exceptions may be written to files [/home/dbadmin/imp_io_mbps_1.log], [/home/dbadmin/imp_io_mbps_1.log.1], etc
Rows Loaded
-------------
1
(1 row)
vdb_oracle_perf=>
vdb_oracle_perf=> COPY public.crtc_oracle_io_mbps_in_last_1_hour FROM '/home/dbadmin/crtc_oracle_io_mbps_in_last_1_hour.csv' EXCEPTIONS '/home/dbadmin/imp_io_mbps_2.log' DELIMITER AS ',';
NOTICE 7850: In a multi-threaded load, rejected record data may be written to additional files
HINT: Exceptions may be written to files [/home/dbadmin/imp_io_mbps_2.log], [/home/dbadmin/imp_io_mbps_2.log.1], etc
Rows Loaded
-------------
61
(1 row)
vdb_oracle_perf=>
vdb_oracle_perf=> COPY public.crtc_oracle_iops_in_last_1_minute FROM '/home/dbadmin/crtc_oracle_iops_in_last_1_minute.csv' EXCEPTIONS '/home/dbadmin/imp_iops_1.log' DELIMITER AS ',';
NOTICE 7850: In a multi-threaded load, rejected record data may be written to additional files
HINT: Exceptions may be written to files [/home/dbadmin/imp_iops_1.log], [/home/dbadmin/imp_iops_1.log.1], etc
Rows Loaded
-------------
1
(1 row)
vdb_oracle_perf=>
vdb_oracle_perf=> COPY public.crtc_oracle_iops_in_last_1_hour FROM '/home/dbadmin/crtc_oracle_iops_in_last_1_hour.csv' EXCEPTIONS '/home/dbadmin/imp_iops_2.log' DELIMITER AS ',';
NOTICE 7850: In a multi-threaded load, rejected record data may be written to additional files
HINT: Exceptions may be written to files [/home/dbadmin/imp_iops_2.log], [/home/dbadmin/imp_iops_2.log.1], etc
Rows Loaded
-------------
61
(1 row)
vdb_oracle_perf=>
用Tableau可视化Vertica数据库的表
- 按Function Name分类的最近1分钟的IO MBPS
- 按Function Name分类的最近1小时的IO MBPS
- 按Function Name分类的最近1分钟的IOPS
- 按Function Name分类的最近1小时的IOPS
按Function Name分类的最近1分钟的IO MBPS
打开Tableau Desktop工具,然后连接到Vertica数据库,选择schema为public,然后将表crtc_oracle_io_mbps_in_last_1_minute拖动到指定位置,点击底部的工作表,进入工作表编辑区。详见下面两个屏幕截图:
接着,将工作区中左侧“数据”标签卡内“表”的度量名称Sample Time用鼠标拖到位于工作区上方标签名为“列”的右侧“标签框”中,同样的方法,将“表”的14个度量值分别拖到位于工作区上方标签名为“行”的右侧“标签框”中,屏幕截图如下所示:
然后将标签名为“行”内的其余13个度量依次用鼠标拖动到工作区中部的图表纵坐标轴名称为“Smart Scan”的区域,也就是将这14个度量都合并到一个纵坐标轴上,顺便修改图表的名称和纵坐标轴名称,最终的效果如图所示:
因为每个度量在最近1分钟的数据只有一个值显示,显然,所有度量在纵坐标轴上显示的话,这个柱状条形图看起来很臃肿!因此,将这个14个度量换到横坐标轴上,详见下面的两个屏幕截图:
正如我们所看到的,只有Lgwr和Others这两个度量有取值。
按Function Name分类的最近1小时的IO MBPS
因为上一环节我们已经非常详细地说明了在Tablesau Desktop中可视化表crtc_oracle_io_mbps_in_last_1_minute的每一步骤,所以在这里,我们进行快速地操作,见如下屏幕截图。
最终,按Function Name分类的最近1小时的IO MBPS的面积堆叠图是这样的:
按Function Name分类的最近1分钟的IOPS
这14个度量均在纵坐标轴上显示的条形柱状图为:
接着,我们将那14个度量都转换到横坐标轴上显示。其中,有取值的4个度量对应的屏幕截图分别如下所示:
按Function Name分类的最近1小时的IOPS
最近1小时的IOPS的面积堆叠图设置相对简单,最终效果见下图:
以上就是这篇文章用Tableau可视化Vertica数据库之“MBPS&IOPS By Function”篇的所有内容。另外,您也可以从acquire_io_mbps_by_function.sql和acquire_iops_by_function.sql查看我前面提到的所有SQL源代码。如果您有好的建议或意见,欢迎在文章底部的评论区提出,我将逐条阅读,并在最快时间内回复。