今天学习openGauss收集统计信息、打印执行计划、垃圾收集和checkpoint
1.准备数据
CREATE SCHEMA omm=# omm=# omm(# omm(# omm(# omm(# omm(# omm(# omm(# CREATE TABLE tpcds.customer_address ( ca_address_sk integer NOT NULL , ca_address_id character(16), ca_street_number character(10) , ca_street_name character varying(60) , ca_street_type character(15) , ca_suite_number character(10) , ca_omm-# city character varying(60) , ca_county character varying(30) , ca_state character(2) , omm(# ca_zip character(10) , ca_country character varying(20) omm(# , ca_gmt_offset numeric(5,2) , omm(# ca_location_type character(20)omm(# );omm(# omm(# omm(# CREATE TABLE omm=# omm=# omm=# omm=# insert into tpcds.customer_address values (1, 'AAAAAAAABAAAAAAA', '18', 'Jackson', 'Parkway', 'Suite 280', 'Fairfield', 'Maricopa County', 'AZ', '86192' ,'United States', -7.00, 'condo'), (2, 'AAAAAAAACAAAAAAA', '362', 'Washington 6th', 'RD', 'Suite omm-# 80', 'Fairview', 'Taos County', 'NM', '85709', 'United States', -7.00, 'condo'), (3, 'AAAAAAAADAAAAAAA', '585', 'Dogwood Washington', 'Circle', 'Suomm-# ite Q', 'Pleasant Valley', 'York County', 'PA', '12477', 'United States', -5.00, 'single family'omm-# ); INSERT 0 3 omm=# omm=# insert into tpcds.customer_address values(generate_series(10, 10000)); INSERT 0 9991
复制
2.收集统计信息
omm=# select relname, relpages, reltuples from pg_class where relname = 'customer_address'; omm=# relname | relpages | reltuples ------------------+----------+----------- customer_address | 0 | 0 (1 row) omm=# analyze VERBOSE tpcds.customer_address; INFO: analyzing "tpcds.customer_address"(gaussdb pid=1) INFO: ANALYZE INFO : "customer_address": scanned 55 of 55 pages, containing 9994 live rows and 0 dead rows; 9994 rows in sample, 9994 estimated total rows(gaussdb pid=1) ANALYZE omm=# select relname, relpages, reltuples from pg_class where relname = 'customer_address'; relname | relpages | reltuples ------------------+----------+----------- customer_address | 55 | 9994 (1 row)
复制
3.打印执行计划
omm=# SET explain_perf_mode=normal; SET omm=# EXPLAIN SELECT * FROM tpcds.customer_address; omm=# QUERY PLAN ----------------------------------------------------------------------- Seq Scan on customer_address (cost=0.00..154.94 rows=9994 width=151) (1 row) omm=# EXPLAIN(FORMAT JSON) SELECT * FROM tpcds.customer_address; QUERY PLAN -------------------------------------------- [ + { + "Plan": { + "Node Type": "Seq Scan", + "Relation Name": "customer_address",+ "Alias": "customer_address", + "Startup Cost": 0.00, + "Total Cost": 154.94, + } + ] (1 row) omm=# "Plan Rows": 9994, + "Plan Width": 151 + } + omm=# EXPLAIN(COSTS FALSE)SELECT * FROM tpcds.customer_address; QUERY PLAN ------------------------------ Seq Scan on customer_address (1 row) omm=# omm=# EXPLAIN SELECT SUM(ca_address_sk) FROM tpcds.customer_address WHERE ca_address_sk<100; -> Seq Scan on customer_address (cost=0.00..179.93 rows=94 width=4) Filter: (ca_address_sk < 100) (3 rows) omm=# QUERY PLAN ------------------------------------------------------------------------- Aggregate (cost=180.16..180.17 rows=1 width=12) omm=# omm=# omm=# create index customer_address_idx on tpcds.customer_address(ca_address_sk); CREATE INDEX omm=# omm=# omm=# EXPLAIN SELECT * FROM tpcds.customer_address WHERE ca_address_sk<100; QUERY PLAN ------------------------------------------------------------------------------------ ------------ [Bypass] Index Scan using customer_address_idx on customer_address (cost=0.00..9.90 rows=94 width=151) Index Cond: (ca_address_sk < 100) (3 rows) omm=# omm=# omm=#
复制
4.垃圾收集
omm=# update tpcds.customer_address set ca_address_sk = ca_address_sk + 1 where ca_address_sk <100; UPDATE 93 omm=# omm=# omm=# VACUUM (VERBOSE, ANALYZE) tpcds.customer_address; INFO: vacuuming "tpcds.customer_address"(gaussdb pid=1) INFO: index "customer_address_idx" now contains 10087 row versions in 31 pages(gaussdb pid=1) DETAIL: 0 index row versions were removed. 0 index pages have been deleted, 0 are currently reusable. CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: "customer_address": found 0 removable, 10087 nonremovable row versions in 55 out of 55 pages(gaussdb pid=1) DETAIL: 93 dead row versions cannot be removed yet. There were 0 unused item pointers. 0 pages are entirely empty. CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: analyzing "tpcds.customer_address"(gaussdb pid=1) INFO: ANALYZE INFO : "customer_address": scanned 55 of 55 pages, containing 9994 live rows and 93 dead rows; 9994 rows in sample, 9994 estimated total rows(gaussdb pid=1) VACUUM
复制
5.事务日志检查点
omm=# CHECKPOINT; CHECKPOINT
复制
6.清理数据
omm=# drop schema tpcds cascade; NOTICE: drop cascades to table tpcds.customer_address DROP SCHEMA
复制
课后作业
1.创建分区表,并用generate_series(1,N)函数对表插入数据
omm=# create schema my_schema; CREATE SCHEMA omm=# create table my_schema.product omm-# ( omm(# product_id integer, omm(# product_name char(30) omm(# ) omm-# partition by range(product_id) omm-# ( omm(# partition p0 values less than (500), omm(# partition p1 values less than (1000), omm(# partition p2 values less than (2000), omm(# partition p3 values less than (maxvalue) omm(# ); CREATE TABLE omm=# insert into my_schema.product values(generate_series(1,10000)); INSERT 0 10000 omm=# select * from my_schema.product limit 10; product_id | product_name ------------+-------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | (10 rows)
复制
2.收集表统计信息
omm=# analyze VERBOSE my_schema.product; INFO: analyzing "my_schema.product"(gaussdb pid=1) INFO: ANALYZE INFO : "product": scanned 3 of 3 pages, containing 499 live rows and 0 dead rows; 499 rows in sample, 499 estimated total rows(gaussdb pid=1) INFO: ANALYZE INFO : "product": scanned 3 of 3 pages, containing 500 live rows and 0 dead rows; 500 rows in sample, 500 estimated total rows(gaussdb pid=1) INFO: ANALYZE INFO : "product": scanned 5 of 5 pages, containing 1000 live rows and 0 dead rows; 1000 rows in sample, 1000 estimated total rows(gaussdb pid=1) INFO: ANALYZE INFO : "product": scanned 36 of 36 pages, containing 8001 live rows and 0 dead rows; 8001 rows in sample, 8001 estimated total rows(gaussdb pid=1) ANALYZE omm=# select relname, relpages, reltuples from pg_class where relname = 'product'; relname | relpages | reltuples ---------+----------+----------- product | 47 | 10000 (1 row)
复制
3.显示简单查询的执行计划;建立索引并显示有索引条件的执行计划
omm=# SET explain_perf_mode=normal; SET omm=# explain select * from my_schema.product; QUERY PLAN --------------------------------------------------------------------------------- omm=# Partition Iterator (cost=0.00..147.00 rows=10000 width=128) Iterations: 4 -> Partitioned Seq Scan on product (cost=0.00..147.00 rows=10000 width=128) Selected Partitions: 1..4 (4 rows) omm=# create index product_id_index on my_schema.product(product_id); CREATE INDEX omm=# explain select * from my_schema.product where product_id > 5000; QUERY PLAN --------------------------------------------------------------------------------------- Index Scan using product_id_index on product (cost=0.00..112.75 rows=5000 width=128) Index Cond: (product_id > 5000) (2 rows)
复制
4.更新表数据,并做垃圾收集
omm=# update my_schema.product set product_id = product_id - 100 where product_id > 3000; UPDATE 7000 omm=# VACUUM (VERBOSE, ANALYZE) my_schema.product; INFO: vacuuming "my_schema.product"(gaussdb pid=1) DETAIL: 0 dead row versions cannot be removed yet. There were 0 unused item pointers. 0 pages are entirely empty. CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: index "product_id_index" now contains 499 row versions in 68 pages(gaussdb pid=1) DETAIL: 0 index row versions were removed. 0 index pages have been deleted, 0 are currently reusable. CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: "product": found 0 removable, 499 nonremovable row versions in 3 out of 3 pages(gaussdb pid=1)INFO: vacuuming "my_schema.product"(gaussdb pid=1) INFO: index "product_id_index" now contains 500 row versions in 68 pages(gaussdb pid=1) DETAIL: 0 index row versions were removed. 0 index pages have been deleted, 0 are currently reusable. CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: "product": found 0 removable, 500 nonremovable row versions in 3 out of 3 pages(gaussdb pid=1) DETAIL: 0 dead row versions cannot be removed yet. There were 0 unused item pointers. 0 pages are entirely empty. CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: vacuuming "my_schema.product"(gaussdb pid=1) INFO: index "product_id_index" now contains 1000 row versions in 68 pages(gaussdb pid=1) DETAIL: 0 index row versions were removed. 0 index pages have been deleted, 0 are currently reusable. CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: "product": found 0 removable, 1000 nonremovable row versions in 5 out of 5 pages(gaussdb pid=1) DETAIL: 0 dead row versions cannot be removed yet. There were 0 unused item pointers. 0 pages are entirely empty. CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: vacuuming "my_schema.product"(gaussdb pid=1) INFO: index "product_id_index" now contains 15001 row versions in 68 pages(gaussdb pid=1) DETAIL: 0 index row versions were removed. 0 index pages have been deleted, 0 are currently reusable. CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: "product": found 0 removable, 15001 nonremovable row versions in 67 out of 67 pages(gaussdb pid=1) DETAIL: 7000 dead row versions cannot be removed yet. There were 0 unused item pointers. 0 pages are entirely empty. CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: scanned index "product_id_index" to remove 0.000000 invisible rows(gaussdb pid=1) DETAIL: CPU 0.00s/0.00u sec elapsed 0.00 sec. INFO: analyzing "my_schema.product"(gaussdb pid=1) INFO: ANALYZE INFO : "product": scanned 3 of 3 pages, containing 499 live rows and 0 dead rows; 499 rows in sample, 499 estimated total rows(gaussdb pid=1) INFO: ANALYZE INFO : "product": scanned 3 of 3 pages, containing 500 live rows and 0 dead rows; 500 rows in sample, 500 estimated total rows(gaussdb pid=1) INFO: ANALYZE INFO : "product": scanned 5 of 5 pages, containing 1000 live rows and 0 dead rows; 1000 rows in sample, 1000 estimated total rows(gaussdb pid=1) INFO: ANALYZE INFO : "product": scanned 67 of 67 pages, containing 8001 live rows and 7000 dead rows; 8001 rows in sample, 8001 estimated total rows(gaussdb pid=1) VACUUM omm=# CHECKPOINT; CHECKPOINT
复制
5.清理数据
omm=# drop schema my_schema cascade; NOTICE: drop cascades to table my_schema.product DROP SCHEMA
复制
「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。
评论
相关阅读
2025年3月国产数据库大事记
墨天轮编辑部
875次阅读
2025-04-03 15:21:16
MogDB 发布更新,解决 openGauss 数据库在长事务情况下Ustore表膨胀问题
MogDB
287次阅读
2025-04-17 10:41:41
openGauss 7.0.0-RC1 版本正式发布!
Gauss松鼠会
204次阅读
2025-04-01 12:27:03
MogDB 发布更新,解决 openGauss 数据库在长事务情况下Ustore表膨胀问题
云和恩墨
184次阅读
2025-04-16 09:52:02
openGauss 7.0.0-RC1 版本体验:一主一备快速安装指南
孙莹
180次阅读
2025-04-01 10:30:07
鲲鹏RAG一体机解决方案正式发布 openGauss DataVec向量数据库助力DeepSeek行业应用
Gauss松鼠会
124次阅读
2025-03-31 10:00:29
荣誉时刻!openGauss认证证书快递已发,快来看看谁榜上有名!
墨天轮小教习
108次阅读
2025-04-23 17:39:13
openGauss6.0.0适配操作系统自带的软件,不依赖三方库
来杯拿铁
75次阅读
2025-04-18 10:49:53
opengauss使用gs_probackup进行增量备份恢复
进击的CJR
70次阅读
2025-04-09 16:11:58
Postgresql数据库单个Page最多存储多少行数据
maozicb
58次阅读
2025-04-23 16:02:19