暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

Python 中的万能之王 Lambda 函数

SQL数据库开发 2022-04-12
763
Python 提供了非常多的库和内置函数。有不同的方法可以执行相同的任务,而在 Python 中,有个万能之王函数:lambda 函数,它可以以不同的方式在任何地方使用。今天云朵君将和大家一起研究下这个万能之王!

Lambda 函数简介

Lambda函数也被称为匿名(没有名称)函数,它直接接受参数的数量以及使用该参数执行的条件或操作,该参数以冒号分隔,并返回最终结果。为了在大型代码库上编写代码时执行一项小任务,或者在函数中执行一项小任务,便在正常过程中使用lambda函数。

lambda argument_list:expersion

argument_list
是参数列表,它的结构与Python
中函数(function
)的参数列表是一样的

a,ba=1,b=2*args**kwargsa,b=1,*args空....

expression
是一个关于参数的表达式,表达式中出现的参数需要在argument_list
中有定义,并且表达式只能是单行的。

1Nonea+bsum(a)1 if a >10 else 0[i for i in range(10)]...

普通函数和Lambda函数的区别

  1. 没有名称Lambda函数没有名称,而普通操作有一个合适的名称。
  2. Lambda函数没有返回值使用def
    关键字构建的普通函数返回值或序列数据类型,但在Lambda函数中返回一个完整的过程。假设我们想要检查数字是偶数还是奇数,使用lambda函数语法类似于下面的代码片段。
b = lambda x: "Even" if x%2==0 else "Odd"b(9)
  1. 函数只在一行中Lambda函数只在一行中编写和创建,而在普通函数的中使用缩进
  2. 不用于代码重用Lambda函数不能用于代码重用,或者不能在任何其他文件中导入这个函数。相反,普通函数用于代码重用,可以在外部文件中使用。

为什么要使用Lambda函数?

一般情况下,我们不使用Lambda函数,而是将其与高阶函数一起使用。高阶函数是一种需要多个函数来完成任务的函数,或者当一个函数返回任何另一个函数时,可以选择使用Lambda函数。

什么是高阶函数?

通过一个例子来理解高阶函数。假设有一个整数列表,必须返回三个输出。

  • 一个列表中所有偶数的和
  • 一个列表中所有奇数的和
  • 一个所有能被三整除的数的和

首先假设用普通函数来处理这个问题。在这种情况下,将声明三个不同的变量来存储各个任务,并使用一个for循环处理并返回结果三个变量。该方法常规可正常运行。

现在使用Lambda函数来解决这个问题,那么可以用三个不同的Lambda函数来检查一个待检验数是否是偶数,奇数,还是能被三整除,然后在结果中加上一个数。

def return_sum(func, lst):  result = 0  for i in lst:    #if val satisfies func    if func(i):      result = result + i  return resultlst = [11,14,21,56,78,45,29,28]x = lambda a: a%2 == 0y = lambda a: a%2 != 0z = lambda a: a%3 == 0print(return_sum(x, lst))print(return_sum(y, lst))print(return_sum(z, lst))

这里创建了一个高阶函数,其中将Lambda函数作为一个部分传递给普通函数。其实这种类型的代码在互联网上随处可见。然而很多人在使用Python时都会忽略这个函数,或者只是偶尔使用它,但其实这些函数真的非常方便,同时也可以节省更多的代码行。接下来我们一起看看这些高阶函数。

Python内置高阶函数

Map函数

map() 会根据提供的函数对指定序列做映射。

Map函数是一个接受两个参数的函数。第一个参数 function 以参数序列中的每一个元素调用 function 函数,第二个是任何可迭代的序列数据类型。返回包含每次 function 函数返回值的新列表。

map(function, iterable, ...)

Map函数将定义在迭代器对象中的某种类型的操作。假设我们要将数组元素进行平方运算,即将一个数组的每个元素的平方映射到另一个产生所需结果的数组。

arr = [2,4,6,8] arr = list(map(lambda x: x*x, arr)) print(arr)

我们可以以不同的方式使用Map函数。假设有一个包含名称、地址等详细信息的字典列表,目标是生成一个包含所有名称的新列表。

students = [            {"name""John Doe",             "father name""Robert Doe",             "Address""123 Hall street"             },            {              "name""Rahul Garg",              "father name""Kamal Garg",              "Address""3-Upper-Street corner"            },            {              "name""Angela Steven",             "father name""Jabob steven",             "Address""Unknown"            }]print(list(map(lambda student: student['name'], students)))>>> ['John Doe''Rahul Garg''Angela Steven']

上述操作通常出现在从数据库或网络抓取获取数据等场景中。

Filter函数

Filter函数根据给定的特定条件过滤掉数据。即在函数中设定过滤条件,迭代元素,保留返回值为True 的元素。Map 函数对每个元素进行操作,而 filter 函数仅输出满足特定要求的元素。

假设有一个水果名称列表,任务是只输出那些名称中包含字符“g”
的名称。

fruits = ['mango''apple''orange''cherry''grapes'] print(list(filter(lambda fruit: 'g' in fruit, fruits)))

filter(function or None, iterable) --> filter object

返回一个迭代器,为那些函数或项为真的可迭代项。如果函数为None,则返回为真的项。

Reduce函数

这个函数比较特别,不是 Python 的内置函数,需要通过from functools import reduce
导入。Reduce 从序列数据结构返回单个输出值,它通过应用一个给定的函数来减少元素。

reduce(function, sequence[, initial]) -> value

将包含两个参数的函数(function
)累计应用于序列(sequence
)的项,从左到右,从而将序列reduce
至单个值。

如果存在initial
,则将其放在项目之前的序列,并作为默认值时序列是空的。

假设有一个整数列表,并求得所有元素的总和。且使用reduce函数而不是使用for循环来处理此问题。

from functools import reducelst = [2,4,6,8,10]print(reduce(lambda x, y: x+y, lst))>>> 30

还可以使用 reduce 函数而不是for循环从列表中找到最大或最小的元素。

lst = [2,4,6,8]# 找到最大元素print(reduce(lambda x, y: x if x>y else y, lst))# 找到最小元素print(reduce(lambda x, y: x if x<y else y, lst))

高阶函数的替代方法

列表推导式

其实列表推导式只是一个for循环,用于添加新列表中的每一项,以从现有索引或一组元素创建一个新列表。之前使用map、filter和reduce完成的工作也可以使用列表推导式完成。然而,相比于使用Map和filter函数,很多人更喜欢使用列表推导式,也许是因为它更容易应用和记忆。

同样使用列表推导式将数组中每个元素进行平方运算,水果的例子也可以使用列表推导式来解决。

arr = [2,4,6,8]arr = [i**2 for i in arr]print(arr)fruit_result = [fruit for fruit in fruits if 'g' in fruit]print(fruit_result)

字典推导式

与列表推导式一样,使用字典推导式从现有的字典创建一个新字典。还可以从列表创建字典。

假设有一个整数列表,需要创建一个字典,其中键是列表中的每个元素,值是列表中的每个元素的平方。

lst = [2,4,6,8]D1 = {item:item**2 for item in lst}print(D1)>>> {24416636864}# 创建一个只包含奇数元素的字典arr = [1,2,3,4,5,6,7,8]D2 = {item: item**2 for item in arr if item %2 != 0}print(D2)>>> {1139525749}

一个简单应用

如何快速找到多个字典的公共键

方法一

dl = [d1, d2, d3] # d1, d2, d3为字典,目标找到所有字典的公共键[k for k in dl[0if all(map(lambda d: k in d, dl[1:]))]
dl = [{1:'life'2'is'},       {1:'short'3'i'},       {1'use'4'python'}][k for k in dl[0if all(map(lambda d: k in d, dl[1:]))]# 1
解析
# 列表表达式遍历dl中第一个字典中的键[k for k in dl[0]]# [1, 2]# lambda 匿名函数判断字典中的键,即k值是否在其余字典中list(map(lambda d: 1 in d, dl[1:]))# [True, True]list(map(lambda d: 2 in d, dl[1:]))#[False, False]# 列表表达式条件为上述结果([True, True])全为True,则输出对应的k值#1

方法二

# 利用集合(set)的交集操作from functools import reduce# reduce(lambda a, b: a*b, range(1,11)) # 10!reduce(lambda a, b: a & b, map(dict.keys, dl))

写在最后

目前已经学习了Lambda函数是什么,以及Lambda函数的一些使用方法。随后又一起学习了Python中的高阶函数,以及如何在高阶函数中使用lambda函数。除此之外,还学习了高阶函数的替代方法:在列表推导式和字典推导式中执行之前操作。虽然这些方法看似简单,或者说你之前已经见到过这类方法,但你很可能很少使用它们。你可以尝试在其他更加复杂的函数中使用它们,以便使代码更加简洁。

我是岳哥,最后给大家分享我写的SQL两件套:《SQL基础知识第二版》《SQL高级知识第二版》的PDF电子版。里面有各个语法的解释、大量的实例讲解和批注等等,非常通俗易懂,方便大家跟着一起来实操。
有需要的读者可以下载学习,在下面的公众号「数据前线」(非本号)后台回复关键字:SQL,就行
数据前线
——End——

后台回复关键字:1024,获取一份精心整理的技术干货

后台回复关键字:进群,带你进入高手如云的交流群。

推荐阅读

文章转载自SQL数据库开发,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论