暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数

拓端数据部落 2022-06-28
439

原文链接:http://tecdat.cn/?p=23099

在本文关于如何在R中进行贝叶斯分析。我们介绍贝叶斯分析,这个例子是关于职业足球比赛的进球数。

相关视频




模型

首先,我们认为职业足球比赛的进球数来自分布,其中θ是平均进球数。现在假设我们用一位足球专家的意见来得出足球比赛的平均进球数,即参数θ,我们得到:

curve(dnorm(x, 2.50.2), from = -2, to = 8,...)
复制



点击标题查阅往期内容


R语言泊松Poisson回归模型分析案例


左右滑动查看更多


01

02

03

04



我们想知道什么?

在这种情况下,我们想知道θ的后验分布是什么样子的,这个分布的平均值是什么。为了做到这一点,我们将在三种情况下分析:

我们有1个观察值x=1,来自分布为的总体。
我们有3个观测值x=c(1,3,5),来自一个具有分布的总体。
我们有10个观测值x=c(5,4,3,4,3,2,7,2,4,5),来自一个具有分布的总体。

理论方法

在这里,我想告诉你贝叶斯分析是如何分析的。首先,我们有一个来自具有未知参数θ的泊松分布的人口的似然函数。 

我们知道参数θ的先验分布p(θ)是由以下公式给出的。

最后,θ的后验分布为。

其中常数C的计算方法如下。

而后验分布E(θ|x)的平均值由以下公式给出。

计算方法

在这里,你将学习如何在R中使用蒙特卡洛模拟来回答上面提出的问题。对于这三种情况,你将遵循以下步骤。

1. 定义数据

首先,你需要根据方案定义数据。

x <- 1 #第一种情况
复制

2. 计算常数C

现在使用蒙特卡洛模拟来计算积分。为此,有必要从先验分布中产生N=10000个值θi,并在似然函数中评估它们。最后,为了得到C,这些值被平均化。R中的代码如下。

N <- 100000  # 模拟值的数量
rnorm(n=N, mean = 2.5sd = 0.2#先验分布
prod(dpois(x=x, lambda = theta)) #似然函数

复制

3. 寻找后验分布

计算完C后,你可以得到后验分布,如下所示。

        fvero(theta) * dnorm(x=theta) / C
复制

4. 计算后验分布的平均数

最后你可以使用蒙特卡洛模拟计算积分来获得后验分布的平均值。

integral <- mean(aux)
posterior <- integral/C

复制

结果

如前所述,上面介绍的代码用于所有三种情况,唯一根据情况变化的是x。在这一节中,我们将为每种情况展示一张图,其中包含θ的先验和后验分布、后验分布的平均值(蓝色虚线)和观测值(粉红色的点)。

第一种情况

curve(dnorm(x, 2.50.2), col=4,,x=x, y=rep(0, length(x)),
line,v = mposterior,legend=c("topright", legend=c("后验""先验"),)

复制

第二种情况


第三种情况

结论

从结果中我们可以得出这样的结论:当我们有很少的观测数据时,如图1和图2,由于缺乏样本证据,后验分布将倾向于类似于先验分布。相反,当我们有大量的观测数据时,如图3,后验分布将偏离先验分布,因为数据将有更大的影响。

我希望你喜欢这篇文章并了解贝叶斯统计。我鼓励你用其他分布运行这个程序。




点击文末“阅读原文”

获取全文完整资料


本文选自《R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数》。


点击标题查阅往期内容

PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像
MCMC的rstan贝叶斯回归模型和标准线性回归模型比较
数据分享|Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户
贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据
R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间
R语言Gibbs抽样的贝叶斯简单线性回归仿真分析
python贝叶斯随机过程:马尔可夫链Markov-Chain,MC和Metropolis-Hastings,MH采样算法可视化
Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现
Metropolis Hastings采样和贝叶斯泊松回归Poisson模型
Matlab用BUGS马尔可夫区制转换Markov switching随机波动率模型、序列蒙特卡罗SMC、M H采样分析时间序列
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析
R语言Metropolis Hastings采样和贝叶斯泊松回归Poisson模型
R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断
R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例
R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数
R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
R语言中贝叶斯网络(BN)、动态贝叶斯网络、线性模型分析错颌畸形数据
R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归
Python贝叶斯回归分析住房负担能力数据集
R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析
Python用PyMC3实现贝叶斯线性回归模型
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
R语言Gibbs抽样的贝叶斯简单线性回归仿真分析
R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言贝叶斯线性回归和多元线性回归构建工资预测模型
R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例
R语言stan进行基于贝叶斯推断的回归模型
R语言中RStan贝叶斯层次模型分析示例
R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化
R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型
WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较
R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样
R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例
R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化
视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型
R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计


文章转载自拓端数据部落,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论