暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

pg_trgm的gist和gin索引加速字符匹配查询

1078

作者简介

 张晋   来自沈阳美行科技

背景

对车牌号的记忆有时可能记住的是前几位,有时可能是后几位,不同的人记车牌号的习惯也不同。通常是是容易记住首尾,中间不清楚。那么如何在大量已有车牌数据中快速根据模糊的信息来进行查询呢?
模拟

数据库表中约有500w条车牌号记录,对表中的车牌号进行模糊查询。即支持 car_id like ‘%XXXX%XXX%’ 查询

    ---创建表
    create table t_car (id int , car_id text);

    --插入500万车牌数据

    insert into t_car select generate_series(1,5000000), (array['辽A','辽B','吉A','吉B','黑A','黑B'])[floor(random()*6+1)] || substring(md5(random()::text),0,6);

    --查看数据

    select * from t_car limit 5;
    id | car_id
    ----+----------
    1 | 吉A43bb9
    2 | 吉B19b64
    3 | 辽Afb04e
    4 | 吉Bcf90c
    5 | 辽Be67df
    (5 行记录)

    索引

    · 顺序扫描

      explain analyze verbose select * from t_car where car_id = '辽Be67df';
      QUERY PLAN
      -----------------------------------------------------------------
      Gather (cost=1000.00..54069.87 rows=2 width=14) (actual time=0.458..268.782 rows=4 loops=1)
      Output: id, car_id
      Workers Planned: 2
      Workers Launched: 2
      -> Parallel Seq Scan on public.t_car (cost=0.00..53069.67 rows=1 width=14) (actual time=140.151..253.061 rows=1 loops=3)
      Output: id, car_id
      Filter: (t_car.car_id = '辽Be67df'::text)
      Rows Removed by Filter: 1666665
      Worker 0: actual time=246.618..246.619 rows=0 loops=1
      Worker 1: actual time=173.812..251.916 rows=1 loops=1
      Planning time: 0.174 ms
      Execution time: 268.820 ms
      (12 行记录)

      时间:269.684 ms

      · btree

        创建btree类型索引
        create index btree_index_01 on t_car using btree (car_id);

        等值查询,结果还是相当给力
        postgres=# explain analyze verbose select * from t_car where car_id = '辽Be67df';
        QUERY PLAN
        ------------------------------------------------------------------------------------------------------------------------------
        Index Scan using btree_index_01 on public.t_car (cost=0.43..3.77 rows=2 width=14) (actual time=0.047..0.057 rows=4 loops=1)
        Output: id, car_id
        Index Cond: (t_car.car_id = '辽Be67df'::text)
        Planning time: 0.218 ms
        Execution time: 0.091 ms
        (5 行记录)

        时间:0.971 ms

        后模糊查询,不尽人意。不符合预期。
        postgres=# explain analyze verbose select * from t_car where car_id like '辽Be67df%';
        QUERY PLAN
        --------------------------------------------------------------------------------------------------------------------------------
        Gather (cost=1000.00..54119.47 rows=498 width=14) (actual time=0.426..281.444 rows=4 loops=1)
        Output: id, car_id
        Workers Planned: 2
        Workers Launched: 2
        -> Parallel Seq Scan on public.t_car (cost=0.00..53069.67 rows=208 width=14) (actual time=138.857..270.492 rows=1 loops=3)
        Output: id, car_id
        Filter: (t_car.car_id ~~ '辽Be67df%'::text)
        Rows Removed by Filter: 1666665
        Worker 0: actual time=148.488..267.226 rows=2 loops=1
        Worker 1: actual time=268.058..268.058 rows=0 loops=1
        Planning time: 0.153 ms
        Execution time: 281.481 ms
        (12 行记录)

        时间:282.275 ms

        以上btree索引没有起到作用的原因,是因为在创建索引时,默认的opclass为等值查询。

        详情:https://www.postgresql.org/docs/10/indexes-opclass.html

          重新创建btree索引

          drop index btree_index_01;
          create index btree_index_01 on t_car using btree (car_id text_pattern_ops);

          这次查询结果符合预期
          explain analyze verbose select * from t_car where car_id like '辽Be67df%';
          QUERY PLAN
          -----------------------------------------------------------------
          Index Scan using btree_index_01 on public.t_car (cost=0.43..2.66 rows=498 width=14) (actual time=0.050..0.073 rows=4 loops=1)
          Output: id, car_id
          Index Cond: ((t_car.car_id ~>=~ '辽Be67df'::text) AND (t_car.car_id ~<~ '辽Be67dg'::text))
          Filter: (t_car.car_id ~~ '辽Be67df%'::text)
          Planning time: 0.473 ms
          Execution time: 0.106 ms
          (6 行记录)

          时间:1.407 ms

          前模糊查询还是不行
          explain analyze verbose select * from t_car where car_id like '%辽Be67df';
          QUERY PLAN
          ----------------------------------------------------------------- Gather (cost=1000.00..54119.47 rows=498 width=14) (actual time=0.476..309.504 rows=4 loops=1)
          Output: id, car_id
          Workers Planned: 2
          Workers Launched: 2
          -> Parallel Seq Scan on public.t_car (cost=0.00..53069.67 rows=208 width=14) (actual time=121.528..297.927 rows=1 loops=3)
          Output: id, car_id
          Filter: (t_car.car_id ~~ '%辽Be67df'::text)
          Rows Removed by Filter: 1666665
          Worker 0: actual time=200.075..294.789 rows=1 loops=1
          Worker 1: actual time=164.486..295.015 rows=1 loops=1
          Planning time: 0.139 ms
          Execution time: 309.536 ms
          (12 行记录)

          时间:310.278 ms

          解决前模糊查询的方法,反转查询字段。在逻辑上变成后模糊查询。
          create index btree_index_02 on t_car using btree (reverse(car_id) text_pattern_ops);

          · gin

          真正的支持模糊查询

            创建扩展
            create extension pg_trgm;

            创建gin索引
            create index gin_index_01 on t_car using gin(car_id gin_trgm_ops);

            模糊查询速度也能飞
            explain analyze verbose select * from t_car where car_id like '%辽Be67df%';
            QUERY PLAN
            -----------------------------------------------------------------
            Bitmap Heap Scan on public.t_car (cost=36.86..579.80 rows=498 width=14) (actual time=3.936..4.018 rows=4 loops=1)
            Output: id, car_id
            Recheck Cond: (t_car.car_id ~~ '%辽Be67df%'::text)
            Heap Blocks: exact=4
            -> Bitmap Index Scan on gin_index_01 (cost=0.00..36.73 rows=498 width=0) (actual time=3.900..3.900 rows=4 loops=1)
            Index Cond: (t_car.car_id ~~ '%辽Be67df%'::text)
            Planning time: 2.918 ms
            Execution time: 4.359 ms

            explain analyze verbose select * from t_car where car_id like '%辽Be6%df%';
            QUERY PLAN
            -----------------------------------------------------------------
            Bitmap Heap Scan on public.t_car (cost=17.06..560.00 rows=498 width=14) (actual time=5.958..15.353 rows=35 loops=1)
            Output: id, car_id
            Recheck Cond: (t_car.car_id ~~ '%辽Be6%df%'::text)
            Rows Removed by Index Recheck: 3273
            Heap Blocks: exact=3098
            -> Bitmap Index Scan on gin_index_01 (cost=0.00..16.93 rows=498 width=0) (actual time=5.172..5.172 rows=3308 loops=1)
            Index Cond: (t_car.car_id ~~ '%辽Be6%df%'::text)
            Planning time: 0.224 ms
            Execution time: 15.462 ms
            (9 行记录)

            扩展阅读

            rum(https://github.com/postgrespro/rum?spm=a2c4e.11153940.blogcont111793.51.50575bf0HjdIsl) 是一个索引插件,由Postgrespro开源,适合全文检索,属于GIN的增强版本。

            增强包括:

            1、在RUM索引中,存储了lexem的位置信息,所以在计算ranking时,不需要回表查询(而GIN需要回表查询)。

            2、RUM支持phrase搜索,而GIN无法支持。

            3、在一个RUM索引中,允许用户在posting tree中存储除ctid(行号)以外的字段VALUE,例如时间戳。

            如果这种需求多了还是考虑elasticsearch吧

            zombodb是PostgreSQL与ElasticSearch结合的一个索引接口,可以直接读写ES。

            请点击文章底部“阅读原文”查看原文内容。




            PostgreSQL中文社区欢迎广大技术人员投稿
            投稿邮箱:press@postgres.cn

            最后修改时间:2021-03-23 09:33:04
            文章转载自PostgreSQL中文社区,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

            评论