反欺诈其实是通过各种方法把高危人群、帐号异常、设备异常、身份伪冒、申请异常、使用异常、恶意炒信等等去除。
偶发的欺诈并不可怕,大家主要担心欺诈中的正规军,欺诈的黑色产业链,所以黑色产业力量挖掘是非常重要的。
IP数据云:免费查IP归属地、IP应用场景,帮助企业屏蔽风险IP,减少欺诈行为发生。
欺诈一般分为第一方欺诈和第三方欺诈
第一方欺诈是,我就是欺诈主体,我是怀着恶意来骗贷的。
第三方欺诈是,骗贷人不是我,其他人是伪冒我的身份,盗用我的帐户进行欺诈的。
根据第一方欺诈和第三方欺诈的不同,在防控点上的设计也不同。比如第三方欺诈,你可以通过人脸识别等等去做排除;第一方欺诈可能是通过一些模型去识别,是否是恶意骗贷。
常见的欺诈风险类型
身份伪冒,这是非常典型的第三方欺诈,指的是不法分子使用虚假身份信息、未经他人同意而冒用他人身份获取贷款的骗贷行为。
另外还有帐号垃圾注册,通过大规模的帐号注册,养号养卡,控制帐号骗贷。此外还有中介包装、团伙作案、虚假材料等。
其实欺诈并不是对单个的个人,你对的就是团伙,对的是有相当风控经验的职业诈骗人员,好多人以前就是线下贷款的审批人员,他们有相当的风控经验。
首先需要底层数据,比如外部数据、内部数据、业务数据等。其实反欺诈是需要大家发挥自己的聪明才智去设计的,不会有两家反欺诈政策是完全一样的。现在对数据隐私的监管越来越强,越来越保守,如果在外部数据获取遇到阻力的时候,就越来越依靠于对内部数据和业务数据的获取能力。
其次是规则,目前大部分规则是模型,比如从贷前准入、认证、支用等。这些规则引擎,是经常要更新的;尤其是反欺诈规则,一要保密,二要随时更新。
再次,需要一个管理系统,至少要有四块功能:
第一个配置系统,就是规则阀值的设置。
第二个查询系统,能查询每一单人的申请,从客户现在的表现追溯到其申请时刻,能做一些关联性的分析。
第三个是分析系统,一般是自动化的,比如对历史时长、IP地址进行一个跟踪,也可以针对每一个反欺诈规则,追踪今天申请了多少量,拦截了多少量。
第四个是预警系统,如果发现异常现象,它可以随时预警。比如发现某一个IP地址、某一个GPS、某一个社区,它申请量急剧增加的时候,可以实现实时预警,这时候可以人工及时干预,去修改规则引擎。
这四个系统是反欺诈中,最起码的要求。