函数包导入
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import datetime
from sklearn.preprocessing import OneHotEncoder
from pandas.plotting import radviz
构建神经网络
‘’’
构建一个具有1个隐藏层的神经网络,隐层的大小为10
输入层为2(或4)个特征;输出层1个节点,结果为0或1
当特征为2个时,表头为:‘SepalLength’, ‘SepalWidth’, ‘species’,迭代1000次,正确率为100%
当特征为4个时,表头为:‘SepalLength’, ‘SepalWidth’, ‘PetalLength’, ‘PetalWidth’, ‘species’,迭代1000次,正确率为63.64%
‘’’
画图看原始数据
def draw_plot(X, Y):
# 用来正常显示中文标签
plt.rcParams[‘font.sans-serif’] = [‘SimHei’]
plt.scatter(X[0, :], X[1, :], c=Y[0, :], s=50, cmap=plt.cm.Spectral)
plt.title('蓝色-Versicolor, 红色-Virginica')
plt.xlabel('花瓣长度')
plt.ylabel('花瓣宽度')
plt.show()
1.初始化参数
def initialize_parameters(n_x, n_h, n_y):
np.random.seed(2)
权重和偏置矩阵的设置
# 权重和偏置矩阵
w1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros(shape=(n_h, 1))
w2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros(shape=(n_y, 1))
# 通过字典存储参数
parameters = {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2}
return parameters
2.前向传播过程
全局传递参数,用字典储存参数
def forward_propagation(X, parameters):
w1 = parameters[‘w1’]
b1 = parameters[‘b1’]
w2 = parameters[‘w2’]
b2 = parameters[‘b2’]
# 通过前向传播来计算a2
z1 = np.dot(w1, X) + b1 # 这个地方需注意矩阵加法:虽然(w1*X)和b1的维度不同,但可以相加
a1 = np.tanh(z1) # 使用tanh作为第一层的激活函数
z2 = np.dot(w2, a1) + b2
a2 = 1 / (1 + np.exp(-z2)) # 使用sigmoid作为第二层的激活函数
# 通过字典存储参数
cache = {'z1': z1, 'a1': a1, 'z2': z2, 'a2': a2}
return a2, cache
3.计算代价函数
使用交叉熵作为代价函数
def compute_cost(a2, Y):
m = Y.shape[1] # Y的列数即为总的样本数
# 采用交叉熵(cross-entropy)作为代价函数
logprobs = np.multiply(np.log(a2), Y) + np.multiply((1 - Y), np.log(1 - a2))
cost = - np.sum(logprobs) / m
return cost
4.反向传播(计算代价函数的导数)
使用字典储存参数
def backward_propagation(parameters, cache, X, Y):
m = Y.shape[1]
w2 = parameters['w2']
a1 = cache['a1']
a2 = cache['a2']
# 反向传播,计算dw1、db1、dw2、db2
dz2 = a2 - Y
dw2 = (1 / m) * np.dot(dz2, a1.T)
db2 = (1 / m) * np.sum(dz2, axis=1, keepdims=True)
dz1 = np.multiply(np.dot(w2.T, dz2), 1 - np.power(a1, 2))
dw1 = (1 / m) * np.dot(dz1, X.T)
db1 = (1 / m) * np.sum(dz1, axis=1, keepdims=True)
grads = {'dw1': dw1, 'db1': db1, 'dw2': dw2, 'db2': db2}
return grads
5.更新参数
def update_parameters(parameters, grads, learning_rate=0.4):
w1 = parameters[‘w1’]
b1 = parameters[‘b1’]
w2 = parameters[‘w2’]
b2 = parameters[‘b2’]
dw1 = grads['dw1']
db1 = grads['db1']
dw2 = grads['dw2']
db2 = grads['db2']
# 更新参数
w1 = w1 - dw1 * learning_rate
b1 = b1 - db1 * learning_rate
w2 = w2 - dw2 * learning_rate
b2 = b2 - db2 * learning_rate
parameters = {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2}
return parameters
6.建立神经网络
输入层、输出层结点数可以自己调节
def nn_model(X, Y, n_h, n_input, n_output, num_iterations=10000, print_cost=False):
np.random.seed(3)
n_x = n_input # 输入层节点数
n_y = n_output # 输出层节点数
全流程:初始化、梯度下降、前向传播、计算损失、反向传播、更新参数
# 1.初始化参数
parameters = initialize_parameters(n_x, n_h, n_y)
# 梯度下降循环
for i in range(0, num_iterations):
# 2.前向传播
a2, cache = forward_propagation(X, parameters)
# 3.计算代价函数
cost = compute_cost(a2, Y)
# 4.反向传播
grads = backward_propagation(parameters, cache, X, Y)
# 5.更新参数
parameters = update_parameters(parameters, grads)
# 每1000次迭代,输出一次代价函数
if print_cost and i % 1000 == 0:
print('迭代第%i次,代价函数为:%f' % (i, cost))
return parameters
7.模型评估
def predict(parameters, x_test, y_test):
w1 = parameters[‘w1’]
b1 = parameters[‘b1’]
w2 = parameters[‘w2’]
b2 = parameters[‘b2’]
z1 = np.dot(w1, x_test) + b1
a1 = np.tanh(z1)
z2 = np.dot(w2, a1) + b2
a2 = 1 / (1 + np.exp(-z2))
# 结果的维度
n_rows = a2.shape[0]
n_cols = a2.shape[1]
# 预测值结果存储
output = np.empty(shape=(n_rows, n_cols), dtype=int)
for i in range(n_rows):
for j in range(n_cols):
if a2[i][j] > 0.5:
output[i][j] = 1
else:
output[i][j] = 0
# 将独热编码反转为标签
output = encoder.inverse_transform(output.T)
output = output.reshape(1, output.shape[0])
output = output.flatten()
print('预测结果:', output)
print('真实结果:', y_test)
count = 0
for k in range(0, n_cols):
if output[k] == y_test[k]:
count = count + 1
else:
print('错误分类样本的序号:', k + 1)
acc = count / int(a2.shape[1]) * 100
print('准确率:%.2f%%' % acc)
return output
8.结果可视化
特征有4个维度,类别有1个维度,一共5个维度,故采用了RadViz图
def result_visualization(x_test, y_test, result):
cols = y_test.shape[0]
y = []
pre = []
labels = [‘setosa’, ‘versicolor’, ‘virginica’]
# 将0、1、2转换成setosa、versicolor、virginica
for i in range(cols):
y.append(labels[y_test[i]])
pre.append(labels[result[i]])
# 将特征和类别矩阵拼接起来
real = np.column_stack((x_test.T, y))
prediction = np.column_stack((x_test.T, pre))
# 转换成DataFrame类型,并添加columns
df_real = pd.DataFrame(real, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species'])
df_prediction = pd.DataFrame(prediction, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species'])
# 将特征列转换为float类型,否则radviz会报错
df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float)
df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float)
# 绘图
plt.figure('真实分类')
radviz(df_real, 'Species', color=['blue', 'green', 'red', 'yellow'])
plt.figure('预测分类')
radviz(df_prediction, 'Species', color=['blue', 'green', 'red', 'yellow'])
plt.show()
9.调用函数进行计算
if name == “main”:
# 读取数据
iris = pd.read_csv(‘E:\GitHub\iris_classification_BPNeuralNetwork\bpnn_V1数据集\iris_training.csv’)
X = iris[[‘SepalLength’, ‘SepalWidth’, ‘PetalLength’, ‘PetalWidth’]].values.T # T是转置
Y = iris[‘species’].values
# 将标签转换为独热编码
encoder = OneHotEncoder()
Y = encoder.fit_transform(Y.reshape(Y.shape[0], 1))
Y = Y.toarray().T
Y = Y.astype('uint8')
数据训练
# 开始训练
start_time = datetime.datetime.now()
# 输入4个节点,隐层10个节点,输出3个节点,迭代10000次
parameters = nn_model(X, Y, n_h=10, n_input=4, n_output=3, num_iterations=10000, print_cost=True)
end_time = datetime.datetime.now()
print("用时:" + str(round((end_time - start_time).microseconds / 1000)) + 'ms')
测试集
# 对模型进行测试
data_test = pd.read_csv('E:\\GitHub\\iris_classification_BPNeuralNetwork\\bpnn_V1数据集\\iris_test.csv')
x_test = data_test[['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth']].values.T
y_test = data_test['species'].values
result = predict(parameters, x_test, y_test)
10.结果可视化
# 分类结果可视化
result_visualization(x_test, y_test, result)
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import datetime
from sklearn.preprocessing import OneHotEncoder
from pandas.plotting import radviz
'''
构建一个具有1个隐藏层的神经网络,隐层的大小为10
输入层为2(或4)个特征;输出层1个节点,结果为0或1
当特征为2个时,表头为:'SepalLength', 'SepalWidth', 'species',迭代1000次,正确率为100%
当特征为4个时,表头为:'SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'species',迭代1000次,正确率为63.64%
'''
# 画图看原始数据
def draw_plot(X, Y):
# 用来正常显示中文标签
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.scatter(X[0, :], X[1, :], c=Y[0, :], s=50, cmap=plt.cm.Spectral)
plt.title('蓝色-Versicolor, 红色-Virginica')
plt.xlabel('花瓣长度')
plt.ylabel('花瓣宽度')
plt.show()
# 1.初始化参数
def initialize_parameters(n_x, n_h, n_y):
np.random.seed(2)
# 权重和偏置矩阵
w1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros(shape=(n_h, 1))
w2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros(shape=(n_y, 1))
# 通过字典存储参数
parameters = {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2}
return parameters
# 2.前向传播
def forward_propagation(X, parameters):
w1 = parameters['w1']
b1 = parameters['b1']
w2 = parameters['w2']
b2 = parameters['b2']
# 通过前向传播来计算a2
z1 = np.dot(w1, X) + b1 # 这个地方需注意矩阵加法:虽然(w1*X)和b1的维度不同,但可以相加
a1 = np.tanh(z1) # 使用tanh作为第一层的激活函数
z2 = np.dot(w2, a1) + b2
a2 = 1 / (1 + np.exp(-z2)) # 使用sigmoid作为第二层的激活函数
# 通过字典存储参数
cache = {'z1': z1, 'a1': a1, 'z2': z2, 'a2': a2}
return a2, cache
# 3.计算代价函数
def compute_cost(a2, Y):
m = Y.shape[1] # Y的列数即为总的样本数
# 采用交叉熵(cross-entropy)作为代价函数
logprobs = np.multiply(np.log(a2), Y) + np.multiply((1 - Y), np.log(1 - a2))
cost = - np.sum(logprobs) / m
return cost
# 4.反向传播(计算代价函数的导数)
def backward_propagation(parameters, cache, X, Y):
m = Y.shape[1]
w2 = parameters['w2']
a1 = cache['a1']
a2 = cache['a2']
# 反向传播,计算dw1、db1、dw2、db2
dz2 = a2 - Y
dw2 = (1 / m) * np.dot(dz2, a1.T)
db2 = (1 / m) * np.sum(dz2, axis=1, keepdims=True)
dz1 = np.multiply(np.dot(w2.T, dz2), 1 - np.power(a1, 2))
dw1 = (1 / m) * np.dot(dz1, X.T)
db1 = (1 / m) * np.sum(dz1, axis=1, keepdims=True)
grads = {'dw1': dw1, 'db1': db1, 'dw2': dw2, 'db2': db2}
return grads
# 5.更新参数
def update_parameters(parameters, grads, learning_rate=0.4):
w1 = parameters['w1']
b1 = parameters['b1']
w2 = parameters['w2']
b2 = parameters['b2']
dw1 = grads['dw1']
db1 = grads['db1']
dw2 = grads['dw2']
db2 = grads['db2']
# 更新参数
w1 = w1 - dw1 * learning_rate
b1 = b1 - db1 * learning_rate
w2 = w2 - dw2 * learning_rate
b2 = b2 - db2 * learning_rate
parameters = {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2}
return parameters
# 建立神经网络
def nn_model(X, Y, n_h, n_input, n_output, num_iterations=10000, print_cost=False):
np.random.seed(3)
n_x = n_input # 输入层节点数
n_y = n_output # 输出层节点数
# 1.初始化参数
parameters = initialize_parameters(n_x, n_h, n_y)
# 梯度下降循环
for i in range(0, num_iterations):
# 2.前向传播
a2, cache = forward_propagation(X, parameters)
# 3.计算代价函数
cost = compute_cost(a2, Y)
# 4.反向传播
grads = backward_propagation(parameters, cache, X, Y)
# 5.更新参数
parameters = update_parameters(parameters, grads)
# 每1000次迭代,输出一次代价函数
if print_cost and i % 1000 == 0:
print('迭代第%i次,代价函数为:%f' % (i, cost))
return parameters
# 6.模型评估
def predict(parameters, x_test, y_test):
w1 = parameters['w1']
b1 = parameters['b1']
w2 = parameters['w2']
b2 = parameters['b2']
z1 = np.dot(w1, x_test) + b1
a1 = np.tanh(z1)
z2 = np.dot(w2, a1) + b2
a2 = 1 / (1 + np.exp(-z2))
# 结果的维度
n_rows = a2.shape[0]
n_cols = a2.shape[1]
# 预测值结果存储
output = np.empty(shape=(n_rows, n_cols), dtype=int)
for i in range(n_rows):
for j in range(n_cols):
if a2[i][j] > 0.5:
output[i][j] = 1
else:
output[i][j] = 0
# 将独热编码反转为标签
output = encoder.inverse_transform(output.T)
output = output.reshape(1, output.shape[0])
output = output.flatten()
print('预测结果:', output)
print('真实结果:', y_test)
count = 0
for k in range(0, n_cols):
if output[k] == y_test[k]:
count = count + 1
else:
print('错误分类样本的序号:', k + 1)
acc = count / int(a2.shape[1]) * 100
print('准确率:%.2f%%' % acc)
return output
# 7.结果可视化
# 特征有4个维度,类别有1个维度,一共5个维度,故采用了RadViz图
def result_visualization(x_test, y_test, result):
cols = y_test.shape[0]
y = []
pre = []
labels = ['setosa', 'versicolor', 'virginica']
# 将0、1、2转换成setosa、versicolor、virginica
for i in range(cols):
y.append(labels[y_test[i]])
pre.append(labels[result[i]])
# 将特征和类别矩阵拼接起来
real = np.column_stack((x_test.T, y))
prediction = np.column_stack((x_test.T, pre))
# 转换成DataFrame类型,并添加columns
df_real = pd.DataFrame(real, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species'])
df_prediction = pd.DataFrame(prediction, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species'])
# 将特征列转换为float类型,否则radviz会报错
df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float)
df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float)
# 绘图
plt.figure('真实分类')
radviz(df_real, 'Species', color=['blue', 'green', 'red', 'yellow'])
plt.figure('预测分类')
radviz(df_prediction, 'Species', color=['blue', 'green', 'red', 'yellow'])
plt.show()
if __name__ == "__main__":
# 读取数据
iris = pd.read_csv('E:\\GitHub\\iris_classification_BPNeuralNetwork\\bpnn_V1数据集\\iris_training.csv')
X = iris[['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth']].values.T # T是转置
Y = iris['species'].values
# 将标签转换为独热编码
encoder = OneHotEncoder()
Y = encoder.fit_transform(Y.reshape(Y.shape[0], 1))
Y = Y.toarray().T
Y = Y.astype('uint8')
# 开始训练
start_time = datetime.datetime.now()
# 输入4个节点,隐层10个节点,输出3个节点,迭代10000次
parameters = nn_model(X, Y, n_h=10, n_input=4, n_output=3, num_iterations=10000, print_cost=True)
end_time = datetime.datetime.now()
print("用时:" + str(round((end_time - start_time).microseconds / 1000)) + 'ms')
# 对模型进行测试
data_test = pd.read_csv('E:\\GitHub\\iris_classification_BPNeuralNetwork\\bpnn_V1数据集\\iris_test.csv')
x_test = data_test[['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth']].values.T
y_test = data_test['species'].values
result = predict(parameters, x_test, y_test)
# 分类结果可视化
result_visualization(x_test, y_test, result)