暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

ES(elasticsearch) - 三种姿势进行分页查询

原创 zayki 2023-06-07
1065

文章目录

es系列导航

Elasticsearch第一篇:基本介绍
Elasticsearch第二篇:es版本比较
Elasticsearch第三篇:es的三种分页方式与优劣势比较
Elasticsearch第四篇:java实现Scroll分页,内含代码复制即用

1. from + size 浅分页

"浅"分页可以理解为简单意义上的分页。它的原理很简单,就是查询前20条数据,然后截断前10条,只返回10-20的数据。这样其实白白浪费了前10条的查询。

GET test_dev/_search { "query": { "bool": { "filter": [ { "term": { "age": 28 } } ] } }, "size": 10, "from": 20, "sort": [ { "timestamp": { "order": "desc" }, "_id": { "order": "desc" } } ] }
复制

其中,from定义了目标数据的偏移值,size定义当前返回的数目。默认from为0,size为10,即所有的查询默认仅仅返回前10条数据。

在这里有必要了解一下from/size的原理:
因为es是基于分片的,假设有5个分片,from=100,size=10。则会根据排序规则从5个分片中各取回100条数据数据,然后汇总成500条数据后选择最后面的10条数据。

做过测试,越往后的分页,执行的效率越低。总体上会随着from的增加,消耗时间也会增加。而且数据量越大,就越明显!

2. scroll 深分页

from+size查询在10000-50000条数据(1000到5000页)以内的时候还是可以的,但是如果数据过多的话,就会出现深分页问题。

为了解决上面的问题,elasticsearch提出了一个scroll滚动的方式。
scroll 类似于sql中的cursor,使用scroll,每次只能获取一页的内容,然后会返回一个scroll_id。根据返回的这个scroll_id可以不断地获取下一页的内容,所以scroll并不适用于有跳页的情景。

GET test_dev/_search?scroll=5m { "query": { "bool": { "filter": [ { "term": { "age": 28 } } ] } }, "size": 10, "from": 0, "sort": [ { "timestamp": { "order": "desc" }, "_id": { "order": "desc" } } ] }
复制
  1. scroll=5m表示设置scroll_id保留5分钟可用。
  2. 使用scroll必须要将from设置为0。
  3. size决定后面每次调用_search搜索返回的数量

然后我们可以通过数据返回的_scroll_id读取下一页内容,每次请求将会读取下10条数据,直到数据读取完毕或者scroll_id保留时间截止:

GET _search/scroll { "scroll_id": "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAJZ9Fnk1d......", "scroll": "5m" } 12345 注意:请求的接口不再使用索引名了,而是 _search/scroll,其中GET和POST方法都可以使用。
复制

scroll删除
根据官方文档的说法,scroll的搜索上下文会在scroll的保留时间截止后自动清除,但是我们知道scroll是非常消耗资源的,所以一个建议就是当不需要了scroll数据的时候,尽可能快的把scroll_id显式删除掉。

清除指定的scroll_id:

DELETE _search/scroll/DnF1ZXJ5VGhlbkZldGNo.....
复制

清除所有的scroll:

DELETE _search/scroll/_all
复制

3. search_after 深分页

scroll 的方式,官方的建议不用于实时的请求(一般用于数据导出),因为每一个 scroll_id 不仅会占用大量的资源,而且会生成历史快照,对于数据的变更不会反映到快照上。

search_after 分页的方式是根据上一页的最后一条数据来确定下一页的位置,同时在分页请求的过程中,如果有索引数据的增删改查,这些变更也会实时的反映到游标上。但是需要注意,因为每一页的数据依赖于上一页最后一条数据,所以无法跳页请求。

为了找到每一页最后一条数据,每个文档必须有一个全局唯一值,官方推荐使用 _uid 作为全局唯一值,其实使用业务层的 id 也可以。

GET test_dev/_search { "query": { "bool": { "filter": [ { "term": { "age": 28 } } ] } }, "size": 20, "from": 0, "sort": [ { "timestamp": { "order": "desc" }, "_id": { "order": "desc" } } ] }
复制
  1. 使用search_after必须要设置from=0。
  2. 这里我使用timestamp和_id作为唯一值排序。
  3. 我们在返回的最后一条数据里拿到sort属性的值传入到search_after。

使用sort返回的值搜索下一页:

GET test_dev/_search { "query": { "bool": { "filter": [ { "term": { "age": 28 } } ] } }, "size": 10, "from": 0, "search_after": [ 1541495312521, "d0xH6GYBBtbwbQSP0j1A" ], "sort": [ { "timestamp": { "order": "desc" }, "_id": { "order": "desc" } } ] }
复制

4. 比较图

分页方式 性能 优点 缺点 场景
from + size 灵活性好,实现简单 深度分页问题 数据量比较小,能容忍深度分页问题
scroll 解决了深度分页问题 无法反应数据的实时性(快照版本)维护成本高,需要维护一个 scroll_id 海量数据的导出需要查询海量结果集的数据
search_after 性能最好不存在深度分页问题能够反映数据的实时变更 实现复杂,需要有一个全局唯一的字段连续分页的实现会比较复杂,因为每一次查询都需要上次查询的结果 海量数据的分页

转载至:Elasticsearch 三种分页方式

「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论