暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

GBase RTSync同步工具应用

wj2021 2021-05-22
1198

最近在项目中需要使用到该工具进行增量数据的同步。

部署环境

按照手册中的要求,使用了三台服务器,用于部署Zookeeper和Kafka,这三台服务器的ip为192.168.2.201,192.168.2.202,192.168.2.203。RTSync可以与Zookeeper和Kafka共用一台服务器,因此部署在201上。

环境及工具安装

  1. 安装Zookeeper,将Zookeeper安装到三台服务器上,可参考网上的教程;

  2. 安装Kafka,将Kafka安装的三台服务器上,可参考网上的教程;

  3. 将RTSync安装到201的/opt/目录下,目录为/opt/RTSync。

工具配置

  1. 首先配置RTSync使用的Zookeeper和Kafka,按照手册中的描述,修改config_kafka_ora.properties文件中的三个属性:

bootstrap.servers=192.168. 2.201 :9092,192.168. 2.20 2:9092,192.168. 2.20 3:9092

zookeeper.connect= 192.168. 2.201 :2181,192.168. 2.20 2:2181,192.168. 2.20 3:2181

topic.name=test01

  1. 然后配置RTSync的配置文件config_task.xml
 <server   syncMode = "increment"   dataFormatType = "PUREDATA"   id = "server1"   mqType = "kafka"   queueName = "ora"   isHighAvailable = "false"   dataRecoveryMode = "file"   >

     <manager   ip = "192.168.2.201"   port = "9432"   heartbeatPort = "9000"   httpPort = "8080"   isTableHotPatch = "true" />  

     <source   ip = "192.168.2.201"   path = "/opt/RTSync"   readParseAdapter = "adapter"   user = "root"   password = " *** "   queueSize = "10000"   openMonitor = "true"   monitorInterval = "300"   rpcPort = "9191"   sshPort = "22"   dbObjToUpperCase = "false"   isConvertSingleQuote = "true"   queuePollTimeOut = "600"   isEmptyStrPkEqualsNull = "true"   isAllowInsertPkNull = "true" />

     <target   ip = "192.168.2.201"   path = "/opt/RTSync"   writeDataAdapter = "adapter"   user = "root"   password = " *** "   errorishandle = "true"   sendDataBySocket = "true" />  

     <mappings>  

         <source-target   id = "sync1" >  

         <db>  

             <sourcedb  

                 charset = "UTF8"  

                 type = "ORACLE"  

                 startLSN = "0"  

                 fetchSize = "500"  

                 oracleScnStep = "50000"  

                 timestampWithFraction = "false"  

                 maxRecordsPerRead = "200"  

                 maxSizeOfPerRecord = "1024"  

                 timeOut = "2"  

                 driver = "oracle.jdbc.OracleDriver"  

                 url = "jdbc:oracle:thin:test/test@//192.168.2.108:1521/orcl"  

                 user = "TEST"  

                 password = " *** "  

                 catalog = "test"

                 parallel = "3"   >  

             </sourcedb>

             <targetdb  

                 charset = "UTF8"  

                 type = "GCLUSTER"  

                 commitSize = "10000"  

                 queueSize = "200000"  

                 user = "gbase"  

                 password = " *** "  

                 driver = "com.gbase.jdbc.Driver"  

                 catalog = "test"  

                 timeOut = "2"  

                 url = "jdbc:gbase://192.168.2.105:5258/test?useOldAliasMetadataBehavior=true & rewriteBatchedStatements=true" >  

             </targetdb>

             <tables   isInclude = "true" >

                 <table   deleteMode = "NORMAL"   sourceTableName = "T1"   sourcePkColName = ""   targetTableName = "t1"   targetPkColName = ""   />

             </tables>  

         </db>  

         </source-target>  

     </mappings>  

 </server>  

为了进行测试,建了个测试用户test,在其中建了一张表t1,这里要注意的是Oracle中建表以后默认是大写表名,在这个配置文件中也要写成大写。

启动同步

  1. 启动Zookeeper和Kafka;

  2. 启动RTSync,执行sh /opt/RTSync/RTSyncManagerServer.sh start命令;

  3. 在GBase8a MPP中创建Kafka的消费者,用于消费Kafka中的数据。在8a MPP中执行创建命令:

create kafka consumer test transaction topic test01 brokers ‘ 192.168. 2.201 :9092,192.168. 2.20 2:9092,192.168. 2.20 3:9092 ’;

  1. 在GBase8a MPP中启动Kafka消费者。在GBase8a MPP中执行启动命令:

start kafka consumer test;

测试同步

现在同步工具已经启动好了,在oracle中插入一条数据,测试一下:

i nsert into t1 values( 1, ‘asdf’);

commit;

然后在GBase8a MPP执行查询语句:

select * from t1;

结果显示:

±-------±-------+

| col1 | col2 |

±-------±-------+

| 1 | asdf |

±-------±-------+

好了,数据已经同步过来了。

总结

总体来说,环境搭建比较简单,主要需要从网上找一下Zookeeper和Kafka的安装教程。比较麻烦的是RTSync的配置项很多,不过好在有手册可以参考。

「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论