暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

Greenplum 6已合并到PostgreSQL 9.3版本 - 比上一代GP提升:8倍读,195倍更新、删除 - 另有大量PG新特性

digoal 2018-09-26
380

作者

digoal

日期

2018-09-26

标签

PostgreSQL , Greenplum , 6 , gin , 异步事务


背景

Greenplum 6已合并到PostgreSQL 9.3版本 - 相比5性能提升:读8倍,更新、删除195倍 - 另有大量PG新特性,详见PostgreSQL release notes

https://www.postgresql.org/docs/11/static/release.html

例如

1、GIN、SPGIST 索引接口。在模糊查询、全文检索、向量相似计算方面终于有索引加速了。

2、异步事务,小事务写入有大幅提升。

3、物化视图,OLAP中很好用的功能。

4、事件触发器,基于事件控制细粒度DDL权限。

5、整体性能增强。

以上特性都是通过升级PostgreSQL版本加入的。

其他增强:

1、增加跨表的分布式死锁检测。

2、更新、删除由表级排他锁改成行级排他锁,大幅提升DML性能。

gpdb 6 部署示例

与如下同测试环境:

《Deepgreen(Greenplum) 多机部署测试 , TPC-H VS citus》

配置ECS虚拟机OS参数 (all host)

1、内核参数

```
vi /etc/sysctl.conf

add by digoal.zhou

fs.aio-max-nr = 1048576
fs.file-max = 76724600

可选:kernel.core_pattern = /data01/corefiles/core_%e_%u_%t_%s.%p

/data01/corefiles 事先建好,权限777,如果是软链接,对应的目录修改为777

kernel.sem = 4096 2147483647 2147483646 512000

信号量, ipcs -l 或 -u 查看,每16个进程一组,每组信号量需要17个信号量。

kernel.shmall = 107374182

所有共享内存段相加大小限制 (建议内存的80%),单位为页。

kernel.shmmax = 274877906944

最大单个共享内存段大小 (建议为内存一半), >9.2的版本已大幅降低共享内存的使用,单位为字节。

kernel.shmmni = 819200

一共能生成多少共享内存段,每个PG数据库集群至少2个共享内存段

net.core.netdev_max_backlog = 10000
net.core.rmem_default = 262144

The default setting of the socket receive buffer in bytes.

net.core.rmem_max = 4194304

The maximum receive socket buffer size in bytes

net.core.wmem_default = 262144

The default setting (in bytes) of the socket send buffer.

net.core.wmem_max = 4194304

The maximum send socket buffer size in bytes.

net.core.somaxconn = 4096
net.ipv4.tcp_max_syn_backlog = 4096
net.ipv4.tcp_keepalive_intvl = 20
net.ipv4.tcp_keepalive_probes = 3
net.ipv4.tcp_keepalive_time = 60
net.ipv4.tcp_mem = 8388608 12582912 16777216
net.ipv4.tcp_fin_timeout = 5
net.ipv4.tcp_synack_retries = 2
net.ipv4.tcp_syncookies = 1

开启SYN Cookies。当出现SYN等待队列溢出时,启用cookie来处理,可防范少量的SYN攻击

net.ipv4.tcp_timestamps = 1

减少time_wait

net.ipv4.tcp_tw_recycle = 0

如果=1则开启TCP连接中TIME-WAIT套接字的快速回收,但是NAT环境可能导致连接失败,建议服务端关闭它

net.ipv4.tcp_tw_reuse = 1

开启重用。允许将TIME-WAIT套接字重新用于新的TCP连接

net.ipv4.tcp_max_tw_buckets = 262144
net.ipv4.tcp_rmem = 8192 87380 16777216
net.ipv4.tcp_wmem = 8192 65536 16777216

net.nf_conntrack_max = 1200000
net.netfilter.nf_conntrack_max = 1200000

vm.dirty_background_bytes = 409600000

系统脏页到达这个值,系统后台刷脏页调度进程 pdflush(或其他) 自动将(dirty_expire_centisecs/100)秒前的脏页刷到磁盘

默认为10%,大内存机器建议调整为直接指定多少字节

vm.dirty_expire_centisecs = 3000

比这个值老的脏页,将被刷到磁盘。3000表示30秒。

vm.dirty_ratio = 95

如果系统进程刷脏页太慢,使得系统脏页超过内存 95 % 时,则用户进程如果有写磁盘的操作(如fsync, fdatasync等调用),则需要主动把系统脏页刷出。

有效防止用户进程刷脏页,在单机多实例,并且使用CGROUP限制单实例IOPS的情况下非常有效。

vm.dirty_writeback_centisecs = 100

pdflush(或其他)后台刷脏页进程的唤醒间隔, 100表示1秒。

vm.swappiness = 0

不使用交换分区

vm.mmap_min_addr = 65536
vm.overcommit_memory = 0

在分配内存时,允许少量over malloc, 如果设置为 1, 则认为总是有足够的内存,内存较少的测试环境可以使用 1 .

vm.overcommit_ratio = 90

当overcommit_memory = 2 时,用于参与计算允许指派的内存大小。

vm.zone_reclaim_mode = 0

禁用 numa, 或者在vmlinux中禁止.

net.ipv4.ip_local_port_range = 40000 65535

本地自动分配的TCP, UDP端口号范围

fs.nr_open=20480000

单个进程允许打开的文件句柄上限

以下参数请注意

vm.extra_free_kbytes = 4096000

vm.min_free_kbytes = 2097152 # vm.min_free_kbytes 建议每32G内存分配1G vm.min_free_kbytes

如果是小内存机器,以上两个值不建议设置

vm.nr_hugepages = 66536

建议shared buffer设置超过64GB时 使用大页,页大小 /proc/meminfo Hugepagesize

vm.lowmem_reserve_ratio = 1 1 1

对于内存大于64G时,建议设置,否则建议默认值 256 256 32

```

2、资源限制

```
vi /etc/security/limits.conf

nofile超过1048576的话,一定要先将sysctl的fs.nr_open设置为更大的值,并生效后才能继续设置nofile.

  • soft nofile 1024000
  • hard nofile 1024000
  • soft nproc unlimited
  • hard nproc unlimited
  • soft core unlimited
  • hard core unlimited
  • soft memlock unlimited
  • hard memlock unlimited
    ```

3、关闭透明大页,使用精准时钟(可选)

```
vi /etc/rc.local

touch /var/lock/subsys/local

if test -f /sys/kernel/mm/transparent_hugepage/enabled; then
echo never > /sys/kernel/mm/transparent_hugepage/enabled
fi

tsc 时钟

echo tsc > /sys/devices/system/clocksource/clocksource0/current_clocksource
```

chmod +x /etc/rc.d/rc.local

部署gpdb (all host)

1、部署依赖(root执行)

```
rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

yum install -y coreutils glib2 lrzsz mpstat dstat sysstat e4fsprogs xfsprogs ntp readline-devel zlib-devel openssl-devel pam-devel libxml2-devel libxslt-devel python-devel tcl-devel gcc make smartmontools flex bison perl-devel perl-ExtUtils* openldap-devel jadetex openjade bzip2 curl-devel curl apr-devel apr cmake3 python git iotop perf gcc-c++ dstat bzip2-devel krb5-devel libcurl-devel libevent-devel libkadm5 libyaml-devel libxml2-devel openssl-devel perl-ExtUtils-Embed python-devel sysstat python-pip xerces-c-devel

pip install --upgrade pip

pip install paramiko pycrypto psutil lockfile pidlockfile
```

2、部署gpdb(root执行)

```
cd ~
git clone https://github.com/greenplum-db/gpdb
cd gpdb

pip install -r python-dependencies.txt

pip install -r python-developer-dependencies.txt

./configure --disable-orca --with-perl --with-python --with-libxml --prefix=/opt/gpdb6
make -j 128
make install
```

3、检查当前GPDB的pg版本

/opt/gpdb6/bin/psql -V psql (PostgreSQL) 9.3beta1

规划存储目录 (all host)

```
useradd digoal
passwd digoal

mkdir /data01/gpdb6
chown digoal:digoal /data01/gpdb6
```

初始化GPDB集群 (master host)

1、配置文件

```
vi /opt/gpdb6/greenplum_path.sh

追加

export MASTER_DATA_DIRECTORY=/data01/gpdb6/gp-1
export PGDATA=$MASTER_DATA_DIRECTORY
export PGHOST=127.0.0.1
export PGPORT=18000
export PGUSER=digoal
export PGPASSWORD=123
export PGDATABASE=postgres
```

2、环境变量

```
su - digoal

vi ~/.bash_profile

追加

. /opt/gpdb6/greenplum_path.sh
```

3、配置集群主机文件,包含所有节点(master, standby, segment, mirror hosts)

```
su - digoal

vi hostfile

digoal-citus-gpdb-test001
digoal-citus-gpdb-test002
digoal-citus-gpdb-test003
digoal-citus-gpdb-test004
digoal-citus-gpdb-test005
digoal-citus-gpdb-test006
digoal-citus-gpdb-test007
digoal-citus-gpdb-test008
digoal-citus-gpdb-test009
```

4、配置host认证

《Deepgreen(Greenplum) 多机部署测试 , TPC-H VS citus》

gpssh-exkeys -f ./hostfile

5、配置集群初始化文件

如果master host不想配置segment node,则需要修改一下以上hostfile,把master host去掉。

本例在所有主机上初始化segment.

```
vi cluster.conf

ARRAY_NAME="mpp1 cluster"
CLUSTER_NAME="mpp1 cluster"
MACHINE_LIST_FILE=hostfile
SEG_PREFIX=gp
DATABASE_PREFIX=gp
PORT_BASE=28000
declare -a DATA_DIRECTORY=(/data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6 /data01/gpdb6)
MASTER_HOSTNAME=digoal-citus-gpdb-test001
MASTER_DIRECTORY=/data01/gpdb6
MASTER_PORT=18000
IP_ALLOW=0.0.0.0/0
TRUSTED_SHELL=/usr/bin/ssh
CHECK_POINT_SEGMENTS=32
ENCODING=UNICODE
export MASTER_DATA_DIRECTORY
export TRUSTED_SHELL
DEFAULT_QD_MAX_CONNECT=250
QE_CONNECT_FACTOR=5
```

6、初始化集群

```
. /opt/gpdb6/greenplum_path.sh

gpinitsystem -c cluster.conf -h hostfile
```

7、配置参数

gpconfig -c max_connections -v 500 -m 400 gpconfig -c shared_buffers -v '1GB' gpconfig -c max_prepared_transactions -v '1500' gpconfig -c max_stack_depth -v '4MB' gpconfig -c vacuum_cost_delay -v '0' gpconfig -c synchronous_commit -v 'off' gpconfig -c wal_buffers -v '16MB' gpconfig -c wal_writer_delay -v '10ms' gpconfig -c checkpoint_segments -v '128' --skipvalidation gpconfig -c random_page_cost -v '1.3' gpconfig -c log_statement -v 'ddl' gpconfig -c vacuum_freeze_table_age -v '1200000000' gpconfig -c autovacuum_freeze_max_age -v '1300000000' --skipvalidation gpconfig -c autovacuum_vacuum_cost_delay -v '0' --skipvalidation gpconfig -c autovacuum -v 'on' --skipvalidation

重启实例

```
gpstop -M fast -a

gpstart -a
```

以下参数不允许修改,详见GUC文件

src/backend/utils/misc/guc.c

autovacuum autovacuum_freeze_max_age autovacuum_vacuum_cost_delay

GPDB 6 改进评测

1 支持异步事务

PostgreSQL 8.3 就有了,异步事务开启后,对于IO性能较差的盘,小事务的性能提升非常明显。

synchronous_commit = off wal_buffers = 16MB wal_writer_delay = 10ms

2 gin 倒排索引

GIN倒排索引,支持多值列(例如数组、JSON、HSTORE、全文检索),多列任意组合查询索引加速。

例子

```
postgres=# create table t(id int, c1 int[]);
NOTICE: Table doesn't have 'DISTRIBUTED BY' clause -- Using column named 'id' as the Greenplum Database data distribution key for this table.
HINT: The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE

postgres=# create index idx_t_1 on t using gin (c1);
CREATE INDEX

postgres=# create or replace function gen_rand_arr(int,int) returns int[] as $$
postgres$# select array(select (random()*$1)::int from generate_series(1,$2));
postgres$# $$ language sql strict;
CREATE FUNCTION

postgres=# select gen_rand_arr(100,10);
gen_rand_arr


{3,85,71,73,91,2,29,81,69,77}
(1 row)

postgres=# insert into t select id,gen_rand_arr(10000,10) from generate_series(1,10000000) t(id);
INSERT 0 10000000

postgres=# explain analyze select * from t where c1 @> array[1,2];
QUERY PLAN


Gather Motion 4:1 (slice1; segments: 4) (cost=6.50..7.81 rows=1 width=65) (actual time=0.340..0.426 rows=5 loops=2)
-> Bitmap Heap Scan on t (cost=6.50..7.81 rows=1 width=65) (actual time=0.329..0.335 rows=2 loops=2)
Recheck Cond: (c1 @> '{1,2}'::integer[])
-> Bitmap Index Scan on idx_t_1 (cost=0.00..6.50 rows=1 width=0) (actual time=0.259..0.259 rows=0 loops=2)
Index Cond: (c1 @> '{1,2}'::integer[])
(slice0) Executor memory: 322K bytes.
(slice1) Executor memory: 779K bytes avg x 4 workers, 907K bytes max (seg1). Work_mem: 33K bytes max.
Memory used: 128000kB
Optimizer: legacy query optimizer
Total runtime: 1.208 ms
(10 rows)

set enable_bitmapscan =off;

postgres=# explain analyze select * from t where c1 @> array[1,2];
QUERY PLAN


Gather Motion 4:1 (slice1; segments: 4) (cost=0.00..16.50 rows=1 width=65) (actual time=503.962..636.780 rows=5 loops=2)
-> Seq Scan on t (cost=0.00..16.50 rows=1 width=65) (actual time=34.927..588.086 rows=2 loops=2)
Filter: (c1 @> '{1,2}'::integer[])
(slice0) Executor memory: 322K bytes.
(slice1) Executor memory: 54K bytes avg x 4 workers, 54K bytes max (seg0).
Memory used: 128000kB
Optimizer: legacy query optimizer
Total runtime: 1273.949 ms
(8 rows)
```

相比全表扫描,使用GIN索引的查询性能提升上千倍。

3 spgist 索引,范围类型

spgist索引接口,以及范围类型。

```
postgres=# create table t(id int, rg int4range);
NOTICE: Table doesn't have 'DISTRIBUTED BY' clause -- Using column named 'id' as the Greenplum Database data distribution key for this table.
HINT: The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
postgres=# create index idx_t_1 on t using spgist (rg);
CREATE INDEX
postgres=# insert into t values (1, int4range(1,100));
INSERT 0 1
postgres=# insert into t values (2, int4range(101,200));
INSERT 0 1

postgres=# explain select * from t where rg @> 1;
QUERY PLAN


Gather Motion 4:1 (slice1; segments: 4) (cost=0.12..2.74 rows=1 width=18)
-> Index Scan using idx_t_1 on t (cost=0.12..2.74 rows=1 width=18)
Index Cond: (rg @> 1)
Optimizer: legacy query optimizer
(4 rows)

postgres=# select * from t where rg @> 1;
id | rg
----+---------
1 | [1,100)
(1 row)
```

范围类型在一些场景的应用

《会议室预定系统实践(解放开发) - PostgreSQL tsrange(时间范围类型) + 排他约束》

《PostgreSQL 黑科技 range 类型及 gist index 20x+ speedup than Mysql index combine query》

4 增加行级排他锁,优化分布式死锁检测

1、原有分布式死锁检测

```
postgres=# show deadlock_timeout ;
deadlock_timeout


1s
(1 row)

postgres=# create table a (id int, c1 int);
NOTICE: Table doesn't have 'DISTRIBUTED BY' clause -- Using column named 'id' as the Greenplum Database data distribution key for this table.
HINT: The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
Time: 156.785 ms
postgres=# create table b (id int, c1 int);
NOTICE: Table doesn't have 'DISTRIBUTED BY' clause -- Using column named 'id' as the Greenplum Database data distribution key for this table.
HINT: The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
Time: 87.583 ms

postgres=# insert into a values (1,1);
INSERT 0 1
Time: 58.180 ms
postgres=# insert into b values (1,1);
INSERT 0 1
Time: 72.548 ms

postgres=# begin;
BEGIN
postgres=# update b set c1=2 where id=1;
UPDATE 1
...
postgres=# update a set c1=2 where id=1;
UPDATE 1

postgres=# begin;
BEGIN
Time: 1.997 ms
postgres=# update a set c1=2 where id=1;
UPDATE 1
Time: 1.425 ms
...
postgres=# update b set c1=2 where id=1;
ERROR: deadlock detected
LINE 1: update b set c1=2 where id=1;
^
DETAIL: Process 26021 waits for ExclusiveLock on relation 36930 of database 12097; blocked by process 26091.
Process 26091 waits for ExclusiveLock on relation 36927 of database 12097; blocked by process 26021.
```

gpdb 6 与 gpdb 5 行为一致

```
postgres=# begin;
BEGIN
postgres=# update a set c1=2 where id=1;
UPDATE 1
...
postgres=# update b set c1=2 where id=1;
UPDATE 1

postgres=# begin;
BEGIN
postgres=# update b set c1=3 where id=1;
UPDATE 1
...
postgres=# update a set c1=3 where id=1;
ERROR: deadlock detected (seg2 127.0.0.1:24002 pid=3721)
DETAIL: Process 3721 waits for ShareLock on transaction 1306618; blocked by process 3703.
Process 3703 waits for ShareLock on transaction 1306619; blocked by process 3721.
HINT: See server log for query details.
```

2、gpdb6增加了行级锁

(gpdb6以前为表级排他锁)

对同一张表的delete\update操作,堵塞insert\update\delete

begin; update a set c1=2 where id=1;

堵塞其他会话对同一张表的如下操作:insert\update\delete:

update a set c1=3 where id=2; insert into a values (3,1); delete from a where id=2;

gpdb6

行级锁,以上操作不堵塞。

行级分布式死锁检测,参数gp_global_deadlock_detector_period

```
postgres=# show gp_global_deadlock_detector_period;
gp_global_deadlock_detector_period


2min
(1 row)

postgres=# create table a (id int, c1 int);
NOTICE: Table doesn't have 'DISTRIBUTED BY' clause -- Using column named 'id' as the Greenplum Database data distribution key for this table.
HINT: The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE TABLE
postgres=# insert into a values (1,1),(2,2);
INSERT 0 2
postgres=# begin;
BEGIN
postgres=# update a set c1=2 where id=1;
UPDATE 1
...
postgres=# update a set c1=1 where id=2;
UPDATE 1

postgres=# begin;
BEGIN
postgres=# update a set c1=3 where id=2;
UPDATE 1
...
postgres=# update a set c1=3 where id=1;
ERROR: canceling statement due to user request: "cancelled by global deadlock detector"
```

5 TP性能提升

1亿数据量,TPCB,只读,读写混合测试。

```
pgbench -i -s 1000 -h 127.0.0.1 -p 15432 -U postgres postgres

pgbench -M simple -v -r -P 1 -c 16 -j 16 -h 127.0.0.1 -p 15432 -U postgres postgres -T 120 -S

pgbench -M simple -v -r -P 1 -c 16 -j 16 -h 127.0.0.1 -p 15432 -U postgres postgres -T 120
```

1 gpdb 5

```
postgres=# select version();
version


PostgreSQL 8.3.23 (Greenplum Database 5.10.2+7615c3b build ga) on x86_64-pc-linux-gnu, compiled by GCC gcc (GCC) 6.3.1 20170216 (Red Hat 6.3.1-3), 64-bit compiled on Aug 25 2018 08:21:26
(1 row)

postgres=# show gp_server_version;
gp_server_version


5.10.2+7615c3b build ga
(1 row)

postgres=# show gp_server_version_num;
gp_server_version_num


51002
(1 row)
```

1、tpcb 只读

transaction type: <builtin: select only> scaling factor: 1000 query mode: simple number of clients: 16 number of threads: 16 duration: 120 s number of transactions actually processed: 361911 latency average = 5.306 ms latency stddev = 0.854 ms tps = 3014.205774 (including connections establishing) tps = 3014.474824 (excluding connections establishing) script statistics: - statement latencies in milliseconds: 0.002 \set aid random(1, 100000 * :scale) 5.303 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

2、tpcb 读写混合

transaction type: <builtin: TPC-B (sort of)> scaling factor: 1000 query mode: simple number of clients: 16 number of threads: 16 duration: 120 s number of transactions actually processed: 1822 latency average = 1057.754 ms latency stddev = 130.580 ms tps = 15.074113 (including connections establishing) tps = 15.075498 (excluding connections establishing) script statistics: - statement latencies in milliseconds: 0.005 \set aid random(1, 100000 * :scale) 0.001 \set bid random(1, 1 * :scale) 0.001 \set tid random(1, 10 * :scale) 0.001 \set delta random(-5000, 5000) 2.417 BEGIN; 990.377 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid; 7.147 SELECT abalance FROM pgbench_accounts WHERE aid = :aid; 1.186 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid; 1.081 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid; 0.674 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP); 54.865 END;

2 gpdb 6

```
psql
psql (9.3beta1)
Type "help" for help.

postgres=# select version();
version


PostgreSQL 9.3beta1 (Greenplum Database 6.0.0-alpha.0+dev.11201.gb2e98d4 build dev-oss) on x86_64-unknown-linux-gnu, compiled by gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-28), 64-bit compiled on Sep 26 2018 15:00:09
(1 row)

postgres=# show gp_server_version;
gp_server_version


6.0.0-alpha.0+dev.11201.gb2e98d4 build dev-oss
(1 row)

postgres=# show gp_server_version_num;
gp_server_version_num


60000
(1 row)
```

1、tpcb 只读

transaction type: <builtin: select only> scaling factor: 1000 query mode: simple number of clients: 16 number of threads: 16 duration: 120 s number of transactions actually processed: 3006326 latency average = 0.639 ms latency stddev = 0.107 ms tps = 25052.487094 (including connections establishing) tps = 25056.694155 (excluding connections establishing) script statistics: - statement latencies in milliseconds: 0.002 \set aid random(1, 100000 * :scale) 0.637 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

2、tpcb 读写混合

transaction type: <builtin: TPC-B (sort of)> scaling factor: 1000 query mode: simple number of clients: 16 number of threads: 16 duration: 120 s number of transactions actually processed: 351382 latency average = 5.465 ms latency stddev = 9.487 ms tps = 2927.029739 (including connections establishing) tps = 2927.497105 (excluding connections establishing) script statistics: - statement latencies in milliseconds: 0.002 \set aid random(1, 100000 * :scale) 0.001 \set bid random(1, 1 * :scale) 0.001 \set tid random(1, 10 * :scale) 0.000 \set delta random(-5000, 5000) 0.195 BEGIN; 0.779 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid; 0.692 SELECT abalance FROM pgbench_accounts WHERE aid = :aid; 0.703 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid; 0.685 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid; 0.566 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP); 1.838 END;

小结

Greenplum 6已合并到PostgreSQL 9.3版本,相比5性能提升:读8倍,更新、删除195倍,同时有大量PG新特性,例如

1、GIN、SPGIST 索引接口。在模糊查询、全文检索、向量相似计算方面支持索引加速。 1000万行的数组检索,性能提升了1000倍。

2、支持异步事务,小事务写入有大幅提升。

3、支持物化视图,OLAP中很好用的功能。

4、事件触发器,基于事件控制细粒度DDL权限。

5、整体性能增强,OLTP 读8倍,更新、删除195倍。

以上特性都是通过升级PostgreSQL版本加入的。

其他增强:

1、增加跨表的分布式死锁检测。

2、更新、删除由表级排他锁改成行级排他锁,大幅提升DML性能。表现在OLTP方面,更新、删除混合测试TPCB 提升了195倍。

参考

https://www.postgresql.org/docs/11/static/release.html

https://github.com/greenplum-db/gpdb

《Deepgreen(Greenplum) 多机部署测试 , TPC-H VS citus》

《会议室预定系统实践(解放开发) - PostgreSQL tsrange(时间范围类型) + 排他约束》

《PostgreSQL 黑科技 range 类型及 gist index 20x+ speedup than Mysql index combine query》

PostgreSQL 许愿链接

您的愿望将传达给PG kernel hacker、数据库厂商等, 帮助提高数据库产品质量和功能, 说不定下一个PG版本就有您提出的功能点. 针对非常好的提议,奖励限量版PG文化衫、纪念品、贴纸、PG热门书籍等,奖品丰富,快来许愿。开不开森.

9.9元购买3个月阿里云RDS PostgreSQL实例

PostgreSQL 解决方案集合

德哥 / digoal's github - 公益是一辈子的事.

digoal's wechat

文章转载自digoal,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论