案例:使排序下推
现象描述
在做场景性能测试时,发现某场景大部分时间是CN端在做window agg,占到总执行时间95%以上,系统资源不能充分利用。研究发现该场景的特点是:将两列分别求sum作为一个子查询,外层对两列的和再求和后做trunc,然后排序。
表结构如下所示:
1 2 | CREATE TABLE public.test(imsi int,L4_DW_THROUGHPUT int,L4_UL_THROUGHPUT int) with (orientation = column) DISTRIBUTE BY hash(imsi); |
查询语句如下所示:
1 2 3 4 5 6 7 | SELECT COUNT(1) over() AS DATACNT, IMSI AS IMSI_IMSI, CAST(TRUNC(((SUM(L4_UL_THROUGHPUT) + SUM(L4_DW_THROUGHPUT))), 0) AS DECIMAL(20)) AS TOTAL_VOLOME_KPIID FROM public.test AS test GROUP BY IMSI order by TOTAL_VOLOME_KPIID DESC; |
执行计划如下:
1 2 3 4 5 6 7 8 9 | Row Adapter (cost=10.70..10.70 rows=10 width=12) -> Vector Sort (cost=10.68..10.70 rows=10 width=12) Sort Key: ((trunc((((sum(l4_ul_throughput)) + (sum(l4_dw_throughput))))::numeric, 0))::numeric(20,0)) -> Vector WindowAgg (cost=10.09..10.51 rows=10 width=12) -> Vector Streaming (type: GATHER) (cost=242.04..246.84 rows=240 width=12) Node/s: All datanodes -> Vector Hash Aggregate (cost=10.09..10.29 rows=10 width=12) Group By Key: imsi -> CStore Scan on test (cost=0.00..10.01 rows=10 width=12) |
可以看到window agg和sort全部在CN端执行,耗时非常严重。
优化分析
尝试将语句改写为子查询。
1 2 3 4 5 6 7 | SELECT COUNT(1) over() AS DATACNT, IMSI_IMSI, TOTAL_VOLOME_KPIID FROM (SELECT IMSI AS IMSI_IMSI, CAST(TRUNC(((SUM(L4_UL_THROUGHPUT) + SUM(L4_DW_THROUGHPUT))), 0) AS DECIMAL(20)) AS TOTAL_VOLOME_KPIID FROM public.test AS test GROUP BY IMSI ORDER BY TOTAL_VOLOME_KPIID DESC); |
将trunc两列的和作为一个子查询,然后在子查询的外面做window agg,这样排序就可以下推了,执行计划如下:
1 2 3 4 5 6 7 8 9 | Row Adapter (cost=10.70..10.70 rows=10 width=24) -> Vector WindowAgg (cost=10.45..10.70 rows=10 width=24) -> Vector Streaming (type: GATHER) (cost=250.83..253.83 rows=240 width=24) Node/s: All datanodes -> Vector Sort (cost=10.45..10.48 rows=10 width=12) Sort Key: ((trunc(((sum(test.l4_ul_throughput) + sum(test.l4_dw_throughput)))::numeric, 0))::numeric(20,0)) -> Vector Hash Aggregate (cost=10.09..10.29 rows=10 width=12) Group By Key: test.imsi -> CStore Scan on test (cost=0.00..10.01 rows=10 width=12) |
经过SQL改写,性能由120s提升7s,优化效果明显。
查看更多:华为GaussDB 200 实际调优案例
「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。