暂无图片
暂无图片
暂无图片
暂无图片
暂无图片
基于高峰期热门目的地识别的旅客买短乘长行为预估方法.pdf
189
5页
1次
2025-01-25
免费下载
基于高峰期热门目的地识别的旅客买短乘长行为预估方法
孔德越,程 默,袁磊磊,周姗琪,王洪业
Estimating passenger's act of buying short distance ticket for long-distance travel based on identifying popular
destinations during peak period
KONG Deyue, CHENG Mo, YUAN Leilei, ZHOU Shanqi, and WANG Hongye
引用本文:
孔德越, 程默, 袁磊磊, 等. 基于高峰期热门目的地识别的旅客买短乘长行为预估方法[J]. 铁路计算机应用, 2024, 33(8): 26-29.
KONG Deyue, CHENG Mo, YUAN Leilei, et al. Estimating passenger's act of buying short distance ticket for long-distance travel based on
identifying popular destinations during peak period[J]. Railway Computer Application, 2024, 33(8): 26-29.
在线阅读 View online: http://tljsjyy.xml-journal.net/2024/I8/26
您可能感兴趣的其他文章
Articles you may be interested in
基于铁路电子客票的客运自助服务体系研究
Research on passenger transport self-service system based on railway e-ticket
铁路计算机应用. 2022, 31(8): 66-70
冬奥会期间京张高速铁路票务策略研究
Research on ticketing strategies for Beijing-Zhangjiakou high-speed railway during Beijing Olympic Winter Games
铁路计算机应用. 2021, 30(7): 34-38
基于相关性分析的旅客列车客票收入测算方法研究
Passenger train ticket revenue measurement method based onrelevance analysis
铁路计算机应用. 2019, 28(4): 18-21,27
铁路新一代客票系统大数据应用创新研究
Big data application innovation of new generation of railway ticketing andreservation system
铁路计算机应用. 2019, 28(4): 1-7
京张高铁多模态智能票务模式研究
Research on multimodal intelligent ticketing service mode of Beijing-Zhangjiakou high-speed railway
铁路计算机应用. 2021, 30(7): 14-20
基于铁路客票系统MaaS+智能服务平台的多模式行程规划方法初步研究
Preliminary study on multimodal journey planning based on MaaS + intelligent service platform of China railway ticketing and reservation system
铁路计算机应用. 2023, 32(8): 73-78
关注微信公众号,获得更多资讯信息
基于高峰期热门目的地识别的旅客买短乘长
行为预估方法
 
孔德越,程 默,袁磊磊,周姗琪,王洪业
中国铁道科学研究院集团有限公司 电子计算技术研究所,北京 100081
摘 要:旅客集中出行的节假日高峰期间,旅客买短乘长行为成为困扰客运组织管理的难题。文章
提出一种基于高峰期热门目的地识别的旅客买短乘长行为预估模型,通过分析历史客流规律与城市出行
热度实现门车途旅买短长风率评。选2023年高列车际运及补据对
该模型进行检验,结果显示,其整体均方误差0.26%,表明该模型具备实际应用条件;试用情况表明,
该模型可为客运管理部门保障高峰期列车安全运营提供有效决策依据。
关键词:出行热度;买短乘长;客票;热门目的地;超员停车
中图分类号:U293.22:TP39 文献标识码:A
DOI10.3969/j.issn.1005-8451.2024.08.05
Estimating passenger's act of buying short distance ticket for long-distance
travel based on identifying popular destinations during peak period
KONGDeyueCHENGMoYUANLeileiZHOUShanqiWANGHongye
(InstituteofComputingTechnologies,ChinaAcademyofRailwaySciencesCorporationLimited,
Beijing 100081,China)
Abstract: Duringpeakholidayperiodswhenpassengersareconcentrated,theactofbuyingshortdistanceticketfor
long-distancetravelhasbecomeadifficultproblemforpassengertransportorganizationandmanagement.Thispaper
proposed a prediction model for passenger's act of buying short distance ticket for long-distance travel based on
identifyingpopulardestinations duringpeakperiod. Thepaperanalyzed historicalpassengerflow patternsandurban
travelpopularity,implementedtheriskprobabilityassessmentofshortdistancepassengersbuyingshortdistanceticket
forlong-distancetravelonpopulartrainnumbers,selectedactualtrainoperationandticketreplenishmentdataduring
peakhoursin2023totestthemodel.Theresultsshowthattheoverallmeansquareerrorwas0.26%.Itindicatesthat
the model has practical application conditions. The trial results show that this model can provide effective decision-
makingbasisforpassengertransportmanagementdepartmentstoensurethesafeoperationoftrainsduringpeakhours.
Keywords: travel popularity buying short distance ticket for long-distance travel ticket popular tourist
destinationsstoppedduetooverload
致热线列车增,能力
了较大的难度和挑战
20%
[1-3]
收稿日期:2024-05-31
基金项目:中国铁道科学研究院集团有限公司科研项目(2023YJ135
作者简介:孔德越,副研究员;程 默,助理研究员
客运基础理论研究
Basic Theory of Passenger Transport
第33卷 第8期
Vol.33 No.8
文章编号:1005-8451202408-0026-04
RCA
26
2024.08329
of 5
免费下载
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文档的来源(墨天轮),文档链接,文档作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论

关注
最新上传
暂无内容,敬请期待...
下载排行榜
Top250 周榜 月榜