暂无图片
暂无图片
2
暂无图片
暂无图片
暂无图片
Apache Doris
编辑
简介:Apache Doris是一个基于MPP的现代化、高性能、支持实时的分析型数据库,以极速易用的特性被业内所熟知。仅需亚秒级响应时间即可返回海量数据下的查询结果,不仅可以支持高并发的店查询场景,也能支持高吞吐的复杂查询场景。
简介:Apache Doris是一个基于MPP的现代化、高性能、支持实时的分析型数据库,以极速易用的特性被业内所熟知。仅需亚秒级响应时间即可返回海量数据下的查询结果,不仅可以支持高并发的店查询场景,也能支持高吞吐的复杂查询场景。
产品概览 用户评价

目录

Apache Doris 概述

Apache Doris 最早是诞生于百度广告报表业务的 Palo 项目,2017 年正式对外开源,2018 年 7 月由百度捐赠给 Apache 基金会进行孵化,之后在 Apache 导师的指导下由孵化器项目管理委员会成员进行孵化和运营。 目前 Apache Doris 社区已经聚集了来自不同行业近百家企业近 600 位贡献者,并且每月活跃贡献者人数也接近 100 位。

Apache Doris 如今在中国乃至全球范围内都拥有着广泛的用户群体,截止 2022年 6月, Apache Doris 已经在全球超过 2000 家企业的生产环境中得到应用,在中国市值或估值排行前 50 的互联网公司中,有超过 80% 长期使用 Apache Doris,包括百度、美团、小米、京东、字节跳动、腾讯、网易、快手、微博、贝壳等。同时在一些传统行业如金融、能源、制造、电信等领域也有着丰富的应用。

2022 年 6 月,Apache Doris 成功从 Apache 孵化器毕业,正式成为 Apache 顶级项目(Top-Level Project,TLP)。

产品优势

  • 性能优异

自带高效的列式存储引擎,减少数据扫描量的同时还实现了超高的数据压缩比。同时Doris还提供了丰富的索引结构来加速数据读取与过滤,利用分区分桶裁剪功能,Doris可以支持在线服务业务的超高并发,单节点最高可支持上千QPS。更进一步,Apache Doris 结合了向量化执行引擎来充分发挥现代化CPU并行计算能力,辅以智能物化视图技术实现预聚合加速,并可以通过查询优化器同时进行基于规划和基于代价的查询优化。通过上述多种方式,实现了极致的查询性能。

  • 简单易用

支持标准ANSI SQL语法,包括单表聚合、排序、过滤和多表Join、子查询等,还支持窗口函数、Grouping Set等复杂SQL语法,同时用户可以通过UDF和UDAF等自定义函数来拓展系统功能。除此以外,Apache Doris 还实现了MySQL协议兼容,用户可以通过各类客户端工具来访问Doris,并支持与BI工具的无缝对接。

  • 架构精简

系统只有两个Frontend(FE)和Backend(BE)两个模块,其中FE节点负责用户请求的接入、查询计划的解析、元数据存储及集群管理等工作,BE节点负责数据存储和查询计划的执行,自身就是一个完备的分布式数据库管理系统,用户无需安装任何第三方管控组件即可运行起Apache Doris 集群,并且部署和升级过程都非常简易。同时,任一模块都可以支持横向拓展,集群最高可以拓展到数百个节点,支持存储超过10PB的超大规模数据。

  • 稳定可靠

支持数据多副本存储,集群具备自愈功能,自身的分布式管理框架可以自动管理数据副本的分布、修复和均衡,副本损坏时系统可以自动感知并进行修复。节点扩容时,仅需一条SQL命令即可完成,数据分片会自动在节点间均衡,无需人工干预或操作。无论是扩容、缩容、单节点故障还是在升级过程中,系统都无需停止运行,可正常提供稳定可靠的在线服务。

  • 生态丰富

提供丰富的数据同步方式,支持快速加载来自本地、Hadoop、Flink、Spark、Kafka、SeaTunnel等系统中的数据,也可以直接访问MySQL、PostgreSQL、Oracle、S3、Hive、Iceberg、Elasticsearch等系统中的数据而无需数据复制。同时存储在Doris中的数据也可以被 Spark、Flink 读取,并且可以输出给上游数据应用进行展示分析。

技术概述

Doris整体架构如下所示,Doris 架构非常简单,只有两类进程

  • Frontend(FE),主要负责用户请求的接入、查询解析规划、元数据的管理、节点管理相关工作。
  • Backend(BE),主要负责数据存储、查询计划的执行。

这两类进程都是可以横向扩展的,单集群可以支持到数百台机器,数十 PB 的存储容量。并且这两类进程通过一致性协议来保证服务的高可用和数据的高可靠。这种高度集成的架构设计极大的降低了一款分布式系统的运维成本。

使用接口方面,Doris 采用 MySQL 协议,高度兼容 MySQL 语法,支持标准 SQL,用户可以通过各类客户端工具来访问 Doris,并支持与 BI 工具的无缝对接。

存储引擎方面,Doris 采用列式存储,按列进行数据的编码压缩和读取,能够实现极高的压缩比,同时减少大量非相关数据的扫描,从而更加有效利用 IO 和 CPU 资源。

Doris 也支持比较丰富的索引结构,来减少数据的扫描:

  • 支持 Sorted Compound Key Index,可以最多指定三个列组成复合排序键,通过该索引,能够有效进行数据裁剪,从而能够更好支持高并发的报表场景
  • Z-order Index :使用 Z-order 索引,可以高效对数据模型中的任意字段组合进行范围查询
  • Min/Max 索引 :有效过滤数值类型的等值和范围查询
  • Bloom Filter :对高基数列的等值过滤裁剪非常有效
  • Invert Index :能够对任意字段实现快速检索

在存储模型方面,Doris 支持多种存储模型,针对不同的场景做了针对性的优化:

Aggregate Key 模型:相同 Key 的 Value 列合并,通过提前聚合大幅提升性能
Unique Key 模型:Key 唯一,相同 Key 的数据覆盖,实现行级别数据更新
Duplicate Key 模型:明细数据模型,满足事实表的明细存储

Doris 也支持强一致的物化视图,物化视图的更新和选择都在系统内自动进行,不需要用户手动选择,从而大幅减少了物化视图维护的代价。

查询引擎方面,Doris 采用 MPP 的模型,节点间和节点内都并行执行,也支持多个大表的分布式 Shuffle Join,从而能够更好应对复杂查询。

Doris 查询引擎是向量化的查询引擎,所有的内存结构能够按照列式布局,能够达到大幅减少虚函数调用、提升 Cache 命中率,高效利用 SIMD 指令的效果。在宽表聚合场景下性能是非向量化引擎的 5-10 倍。

Doris 采用了 Adaptive Query Execution 技术, 可以根据 Runtime Statistics 来动态调整执行计划,比如通过 Runtime Filter 技术能够在运行时生成生成 Filter 推到 Probe 侧,并且能够将 Filter 自动穿透到 Probe 侧最底层的 Scan 节点,从而大幅减少 Probe 的数据量,加速 Join 性能。Doris 的 Runtime Filter 支持 In/Min/Max/Bloom Filter。

优化器方面 Doris 使用 CBO 和 RBO 结合的优化策略,RBO 支持常量折叠、子查询改写、谓词下推等,CBO 支持 Join Reorder。目前 CBO 还在持续优化中,主要集中在更加精准的统计信息收集和推导,更加精准的代价模型预估等方面。

适用场景

如下图所示,数据源经过各种数据集成和加工处理后,通常会入库到实时数仓 Doris 和离线湖仓(Hive, Iceberg, Hudi 中),Apache Doris 被广泛应用在以下场景中:

  • 报表分析
    • 实时看板 (Dashboards)
    • 面向企业内部分析师和管理者的报表
    • 面向用户或者客户的高并发报表分析(Customer-facing Analytics)。比如面向网站主的站点分析、面向广告主的广告报表,并发通常要求成千上万的 QPS ,查询延时要求毫秒级响应。著名的电商公司京东在广告报表中使用 Apache Doris ,每天写入 100 亿行数据,查询并发 QPS 上万,99 分位的查询延时 150ms。
  • 即席查询(Ad-hoc Query):面向分析师的自助分析,查询模式不固定,要求较高的吞吐。小米公司基于 Doris 构建了增长分析平台(Growing Analytics,GA),利用用户行为数据对业务进行增长分析,平均查询延时 10s,95 分位的查询延时 30s 以内,每天的 SQL 查询量为数万条。
  • 统一数仓构建 :一个平台满足统一的数据仓库建设需求,简化繁琐的大数据软件栈。海底捞基于 Doris 构建的统一数仓,替换了原来由 Spark、Hive、Kudu、Hbase、Phoenix 组成的旧架构,架构大大简化。
  • 数据湖联邦查询:通过外表的方式联邦分析位于 Hive、Iceberg、Hudi 中的数据,在避免数据拷贝的前提下,查询性能大幅提升。

相关资料

用户评价

2
2
词条统计
创建者:小小亮
编辑次数:7
浏览次数:12072
API调用次数:0
贡献者