暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

浮点数和定点数(下)

Alleria Windrunner 2020-08-11
303
上一篇我们讲了用“浮点数”这样的数据形式,来表示一个不能确定大小的数据范围。浮点数可以大到 3.40×10^38,也可以小到 1.17×10−38 这样的数值。同时,我们也发现,其实我们平时写的 0.1、0.2 并不是精确的数值,只是一个近似值。只有 0.5 这样,可以表示成 2^−1 这种形式的,才是一个精确的浮点数。
你是不是感到很疑惑,浮点数的近似值究竟是怎么算出来的?浮点数的加法计算又是怎么回事儿?在实践应用中,我们怎么才用好浮点数呢?这一篇,我们就一起来看这几个问题。


浮点数的二进制转化

我们首先来看,十进制的浮点数怎么表示成二进制。
我们输入一个任意的十进制浮点数,背后都会对应一个二进制表示。比方说,我们输入了一个十进制浮点数 9.1。那么按照之前的讲解,在二进制里面,我们应该把它变成一个“符号位 s+ 指数位 e+ 有效位数 f”的组合。第一步,我们要做的,就是把这个数变成二进制。
首先,我们把这个数的整数部分,变成一个二进制。这个我们前面讲二进制的时候已经讲过了。这里的 9,换算之后就是 1001。
接着,我们把对应的小数部分也换算成二进制。小数怎么换成二进制呢?我们先来定义一下,小数的二进制表示是怎么回事。我们拿 0.1001 这样一个二进制小数来举例说明。和上面的整数相反,我们把小数点后的每一位,都表示对应的 2 的 -N 次方。那么 0.1001,转化成十进制就是:
    1 x 2 ^-1 + 0 x 2 ^-2 + 0 x 2^-3 + 1 x 2 ^ -4=0.5625
    复制
    和整数的二进制表示采用“除以 2,然后看余数”的方式相比,小数部分转换成二进制是用一个相似的反方向操作,就是乘以 2,然后看看是否超过 1。如果超过 1,我们就记下 1,并把结果减去 1,进一步循环操作。在这里,我们就会看到,0.1 其实变成了一个无限循环的二进制小数,0.000110011。这里的“0011”会无限循环下去。

    然后,我们把整数部分和小数部分拼接在一起,9.1 这个十进制数就变成了 1001.000110011…这样一个二进制表示。
    上一篇我们讲过,浮点数其实是用二进制的科学计数法来表示的,所以我们可以把小数点左移三位,这个数就变成了:
      1.001000110011 ... x 2^ 3
      复制
      那这个二进制的科学计数法表示,我们就可以对应到了浮点数的格式里了。这里的符号位 s = 0,对应的有效位 f=001000110011…。因为 f 最长只有 23 位,那这里“0011”无限循环,最多到 23 位就截止了。于是,f=00100011001100110011 001。最后的一个“0011”循环中的最后一个“1”会被截断掉。对应的指数为 e,代表的应该是 3。因为指数位有正又有负,所以指数位在 127 之前代表负数,之后代表正数,那 3 其实对应的是加上 127 的偏移量 130,转化成二进制,就是 130,对应的就是指数位的二进制,表示出来就是 10000010。

      然后,我们把“s+e+f”拼在一起,就可以得到浮点数 9.1 的二进制表示了。最终得到的二进制表示就变成了:
        010000010 0010 001100110000110011 001
        复制
        如果我们再把这个浮点数表示换算成十进制, 实际准确的值是 9.09999942779541015625。相信你现在应该不会感觉奇怪了。


        浮点数的加法和精度损失

        搞清楚了怎么把一个十进制的数值,转化成 IEEE-754 标准下的浮点数表示,我们现在来看一看浮点数的加法是怎么进行的。其实原理也很简单,你记住六个字就行了,那就是先对齐、再计算。
        两个浮点数的指数位可能是不一样的,所以我们要把两个的指数位,变成一样的,然后只去计算有效位的加法就好了。
        比如 0.5,表示成浮点数,对应的指数位是 -1,有效位是 00…(后面全是 0,记住 f 前默认有一个 1)。0.125 表示成浮点数,对应的指数位是 -3,有效位也还是 00…(后面全是 0,记住 f 前默认有一个 1)。
        那我们在计算 0.5+0.125 的浮点数运算的时候,首先要把两个的指数位对齐,也就是把指数位都统一成两个其中较大的 -1。0.125对应的有效位 1.00…也要对应右移两位,因为 f 前面有一个默认的 1,所以就会变成 0.01。然后我们计算两者相加的有效位 1.f,就变成了有效位 1.01,而指数位是 -1,这样就得到了我们想要的加法后的结果。
        实现这样一个加法,也只需要位移。和整数加法类似的半加器和全加器的方法就能够实现,在电路层面,也并没有引入太多新的复杂性。
        回到浮点数的加法过程,你会发现,其中指数位较小的数,需要在有效位进行右移,在右移的过程中,最右侧的有效位就被丢弃掉了。这会导致对应的指数位较小的数,在加法发生之前,就丢失精度。两个相加数的指数位差的越大,位移的位数越大,可能丢失的精度也就越大。当然,也有可能你的运气非常好,右移丢失的有效位都是 0。这种情况下,对应的加法虽然丢失了需要加的数字的精度,但是因为对应的值都是 0,实际的加法的数值结果不会有精度损失。
        32 位浮点数的有效位长度一共只有 23 位,如果两个数的指数位差出 23 位,较小的数右移 24 位之后,所有的有效位就都丢失了。这也就意味着,虽然浮点数可以表示上到 3.40×10^38,下到 1.17×10^−38 这样的数值范围。但是在实际计算的时候,只要两个数,差出 224,也就是差不多 1600 万倍,那这两个数相加之后,结果完全不会变化。
        你可以试一下,我下面用一个简单的 Java 程序,让一个值为 2000 万的 32 位浮点数和 1 相加,你会发现,+1 这个过程因为精度损失,被“完全抛弃”了。
          public class FloatPrecision {
          public static void main(String[] args) {
          float a = 20000000.0f;
          float b = 1.0f;
          float c = a + b;
          System.out.println("c is " + c);
          float d = c - a;
          System.out.println("d is " + d);
          }
          }
          复制
          对应的输出结果就是:
            c is 2.0E7
            d is 0.0
            复制


            Kahan Summation 算法

            那么,我们有没有什么办法来解决这个精度丢失问题呢?虽然我们在计算浮点数的时候,常常可以容忍一定的精度损失,但是像上面那样,如果我们连续加 2000 万个 1,2000 万的数值都会被精度损失丢掉了,就会影响我们的计算结果。
            一个常见的应用场景是,在一些“积少成多”的计算过程中,比如在机器学习中,我们经常要计算海量样本计算出来的梯度或者 loss,于是会出现几亿个浮点数的相加。每个浮点数可能都差不多大,但是随着累积值的越来越大,就会出现“大数吃小数”的情况。
            我们可以做一个简单的实验,用一个循环相加 2000 万个 1.0f,最终的结果会是 1600 万左右,而不是 2000 万。这是因为,加到 1600 万之后的加法因为精度丢失都没有了。这个代码比起上面的使用 2000 万来加 1.0 更具有现实意义。
              public class FloatPrecision {
              public static void main(String[] args) {
              float sum = 0.0f;
              for (int i = 0; i < 20000000; i++) {
              float x = 1.0f;
              sum += x;
              }
              System.out.println("sum is " + sum);
              }
              }
              复制
              对应的输出结果是:
                sum is 1.6777216E7
                复制
                面对这个问题,聪明的计算机科学家们也想出了具体的解决办法。他们发明了一种叫作Kahan Summation的算法来解决这个问题。算法的对应代码如下。从中你可以看到,同样是 2000 万个 1.0f 相加,用这种算法我们得到了准确的 2000 万的结果。
                  public class KahanSummation {
                  public static void main(String[] args) {
                  float sum = 0.0f;
                  float c = 0.0f;
                  for (int i = 0; i < 20000000; i++) {
                  float x = 1.0f;
                  float y = x - c;
                  float t = sum + y;
                  c = (t-sum)-y;
                  sum = t;
                  }
                  System.out.println("sum is " + sum);
                  }
                  }
                  复制
                  对应的输出结果就是:
                    sum is 2.0E7
                    复制
                    其实这个算法的原理其实并不复杂,就是在每次的计算过程中,都用一次减法,把当前加法计算中损失的精度记录下来,然后在后面的循环中,把这个精度损失放在要加的小数上,再做一次运算。
                    如果你对这个背后的数学原理特别感兴趣,可以去看一看Wikipedia 链接里面对应的数学证明,也可以生成一些数据试一试这个算法。这个方法在实际的数值计算中也是常用的,也是大量数据累加中,解决浮点数精度带来的“大数吃小数”问题的必备方案。
                    文章转载自Alleria Windrunner,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

                    评论