暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

Flink Watermark

TechStyle 2021-08-19
280

Event Time & Processing Time

  • Event Time:事件创建的时间

  • Processing Time:执行操作算子的当前机器的本地时间


官网权威解释可以参考

https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/concepts/time/#notions-of-time-event-time-and-processing-time
复制

真实业务场景中,我们往往更关心事件时间(Event Time),Flink 从 1.12 起流的时间特性默认设置为 TimeCharacteristic.EventTime



Watermark

当 Flink 以 Event Time 模式处理数据流时,会根据数据里的时间戳来处理基于时间的算子,通常系统由于网络抖动、分布式架构等原因,会导致乱序数据的产生,从而导致窗口计算不精确。

Fink 为了避免乱序数据带来的窗口计算不精确的问题,引入了 Watermark 机制。

  • Watermark 用于标记 Event Time 的前进过程

  • Watermark 跟随 DataStream Event Time 变动,并自身携带 TimeStamp

  • Watermark 用于表明所有较早的事件已经(可能)到达

  • Watermark 本身也属于特殊的事件


官网权威解释可以参考

https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/concepts/time/#event-time-and-watermarks
复制

在 Flink 中,Watermark 由应用程序开发人员生成,这通常需要开发人员对业务的上下游数据乱序的程度有一定的了解;如果 Watermark 设置的延迟太久,收到结果的速度可能就会很慢,解决办法是在水位线到达之前输出一个近似结果;而如果 Watermark 到达的太早,则可能收到错误结果,不过可以通过 Flink 处理迟到数据的机制来解决这个问题。


Demo

Maven Dependency

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>


<groupId>org.fool</groupId>
<artifactId>flink</artifactId>
<version>1.0-SNAPSHOT</version>


<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>


<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.12.5</version>
</dependency>


<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.12</artifactId>
<version>1.12.5</version>
</dependency>


<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.12</artifactId>
<version>1.12.5</version>
</dependency>


<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.12</artifactId>
<version>1.12.5</version>
</dependency>


<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-elasticsearch7_2.12</artifactId>
<version>1.12.5</version>
</dependency>


<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>flink-connector-redis_2.11</artifactId>
<version>1.0</version>
</dependency>


<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.20</version>
</dependency>


<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.26</version>
</dependency>
</dependencies>


</project>
复制


SRC

src/main/java/org/fool/flink/contract/Sensor.java

package org.fool.flink.contract;


import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;


@Data
@NoArgsConstructor
@AllArgsConstructor
public class Sensor {
private String id;
private Long timestamp;
private Double temperature;
}
复制


src/main/java/org/fool/flink/window/WindowWatermarkTest.java

package org.fool.flink.window;


import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.Watermark;
import org.apache.flink.api.common.eventtime.WatermarkGenerator;
import org.apache.flink.api.common.eventtime.WatermarkGeneratorSupplier;
import org.apache.flink.api.common.eventtime.WatermarkOutput;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.OutputTag;
import org.fool.flink.contract.Sensor;


public class WindowWatermarkTest {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
environment.setParallelism(1);
// environment.setParallelism(4);


DataStream<String> inputStream = environment.socketTextStream("localhost", 7878);


DataStream<Sensor> dataStream = inputStream.map(new MapFunction<String, Sensor>() {
@Override
public Sensor map(String value) throws Exception {
String[] fields = value.split(",");
return new Sensor(fields[0], new Long(fields[1]), new Double(fields[2]));
}
}).assignTimestampsAndWatermarks(new WatermarkStrategy<Sensor>() {
@Override
public WatermarkGenerator<Sensor> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
return new WatermarkGenerator<Sensor>() {
private final long maxOutOfOrderness = 2000; // 2 seconds


private long currentMaxTimestamp;


@Override
public void onEvent(Sensor sensor, long eventTimestamp, WatermarkOutput output) {
// System.out.println("sensor.getTimestamp(): " + sensor.getTimestamp() * 1000L);
// System.out.println("eventTimestamp: " + eventTimestamp);
currentMaxTimestamp = Math.max(sensor.getTimestamp() * 1000L, eventTimestamp);
// System.out.println("currentMaxTimestamp1: " + currentMaxTimestamp);
}


@Override
public void onPeriodicEmit(WatermarkOutput output) {
// System.out.println("currentMaxTimestamp2: " + currentMaxTimestamp);
output.emitWatermark(new Watermark(currentMaxTimestamp - maxOutOfOrderness - 1));
}
};
}
}.withTimestampAssigner(new SerializableTimestampAssigner<Sensor>() {
@Override
public long extractTimestamp(Sensor sensor, long recordTimestamp) {
return sensor.getTimestamp() * 1000L;
}
}));


OutputTag<Sensor> lateTag = new OutputTag<>("late", TypeInformation.of(Sensor.class));


SingleOutputStreamOperator<Sensor> minStream = dataStream.keyBy(new KeySelector<Sensor, String>() {
@Override
public String getKey(Sensor sensor) throws Exception {
return sensor.getId();
}
}).window(TumblingEventTimeWindows.of(Time.seconds(15)))
.allowedLateness(Time.minutes(1))
.sideOutputLateData(lateTag)
.minBy("temperature");


minStream.print("min temp");


minStream.getSideOutput(lateTag).print("late");
environment.execute();
}


}
复制

Note: 当前并行度是 1,Watermark 设置为 2 秒

environment.setParallelism(1);
复制


Run

Socket Input

1,1628754405,35.8
1,1628754420,34.8
1,1628754422,33.8
复制

Note:1628754422 这个时间点会触发窗口 [05, 20) 这个窗口计算


Console Output

min temp> Sensor(id=1, timestamp=1628754405, temperature=35.8)
复制


Socket Input

1,1628754406,30.8
1,1628754407,31.8
复制

Note:在 1628754422 这个时间点后继续输入, 1628754406、1628754407 后仍旧会触发窗口计算


Console Output

min temp> Sensor(id=1, timestamp=1628754406, temperature=30.8)
min temp> Sensor(id=1, timestamp=1628754406, temperature=30.8)
复制

Note:因为设置了 1 分钟的 allowedLateness,1628754406、1628754407 这两个迟到的事件在 [05, 20) 这个窗口已经触发过计算后仍旧会触发窗口计算

allowedLateness(Time.minutes(1))
复制

 

Socket Input

1,1628754482,28.8
复制

Note:在 1628754407 这个时间点后继续输入


Console Output

min temp> Sensor(id=1, timestamp=1628754422, temperature=33.8)
复制

Note:1628754482 这个时间点,1 分钟的 allowedLateness 的窗口会关闭,触发窗口计算


Socket Input

1,1628754411,30.3
1,1628754412,31.3
复制

Note:在 1628754482 这个时间点后继续输入,即 1 分钟的 allowedLateness 的窗口已经关闭


Console Output

late> Sensor(id=1, timestamp=1628754411, temperature=30.3)
late> Sensor(id=1, timestamp=1628754412, temperature=31.3)
复制

Note:1 分钟的 allowedLateness 的窗口关闭后,1628754411、1628754412 这两个迟到的事件会进入 side output


完整的 Socket Input


完整的 Console Output


Key Point

以上操作都是基于并行度为 1 的情况下进行的,当设置的并行度不为 1 时,比如设置并行度为 4,结果会不一样。

environment.setParallelism(4);
复制

并行度不为 1 的时候,测试输出的时候,Watermark 在上下游任务之间传递的规则:必须是每一个分区的 Watermark 都要上升,取所有分区中最小的值才是当前的 Watermark,才会触发窗口聚合计算。


Socket Input

Note:4 个分区的 Watermark 都到了 1628754422,才会触发窗口聚合计算


Console Output


Reference

https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/datastream/event-time/generating_watermarks/




泰克风格 只讲干货 不弄玄虚

文章转载自TechStyle,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论