暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

SQL Plan Management (4-2) SPM感知优化器

原创 赵勇 2020-10-04
1609

Maria Colgan
Master Product Manager
在本系列博客的第一篇(点此链接),我们了解了如何创建SQL计划基线(sql plan baseline)。为语句创建SQL计划基线后,该语句的后续执行将使用SQL计划基线。优化器将从SQL计划基线中的所有计划中,选择当前环境中(包括绑定值、当前统计信息、参数等)成本最佳的计划。优化器还将生成在没有SQL计划基线的情况下,所使用的最佳成本计划。但是,并不会使用该最佳成本计划,而是将其添加到执行计划历史记录中,以供以后验证。换句话说,优化器将使用来自SQL计划基线的已知计划,而不是一个新的、迄今为止未知的计划。这就保证了性能不会下降。

让我们看看这个执行计划选择过程的实际操作。首先,我们通过启用自动计划捕获并执行两次查询来创建SQL计划基线:

SQL> alter session set optimizer_capture_sql_plan_baselines = true;

Session altered.

SQL> var pid number
SQL> exec :pid := 100;

PL/SQL procedure successfully completed.

SQL> select p.prod_name, s.amount_sold, t.calendar_year
2 from sales s, products p, times t 
3 where s.prod_id = p.prod_id 
4 and s.time_id = t.time_id
5 and p.prod_id < :pid;

PROD_NAME AMOUNT_SOLD CALENDAR_YEAR 
--------- ----------- -------------
...
9 rows selected.

SQL> select * from table(dbms_xplan.display_cursor('bfbr3zrg9d5cc', 0, 'basic note'));

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------
EXPLAINED SQL STATEMENT:
------------------------
select p.prod_name, s.amount_sold, t.calendar_year from sales s,
products p, times t where s.prod_id = p.prod_id and s.time_id =
t.time_id and p.prod_id < :pid

Plan hash value: 2787970893
----------------------------------------------------------------
| Id  | Operation                             | Name           |
----------------------------------------------------------------
|   0 | SELECT STATEMENT                      |                |
|   1 |  NESTED LOOPS                         |                |
|   2 |   NESTED LOOPS                        |                |
|   3 |    HASH JOIN                          |                |
|   4 |     TABLE ACCESS BY INDEX ROWID       | PRODUCTS       |
|   5 |      INDEX RANGE SCAN                 | PRODUCTS_PK    |
|   6 |     PARTITION RANGE ALL               |                |
|   7 |      TABLE ACCESS BY LOCAL INDEX ROWID| SALES          |
|   8 |       BITMAP CONVERSION TO ROWIDS     |                |
|   9 |        BITMAP INDEX RANGE SCAN        | SALES_PROD_BIX |
|  10 |    INDEX UNIQUE SCAN                  | TIME_PK        |
|  11 |   TABLE ACCESS BY INDEX ROWID         | TIMES          |
----------------------------------------------------------------

25 rows selected.

SQL> select p.prod_name, s.amount_sold, t.calendar_year
2    from sales s, products p, times t
3    where s.prod_id = p.prod_id
4      and s.time_id = t.time_id
5      and p.prod_id < :pid;

PROD_NAME AMOUNT_SOLD CALENDAR_YEAR
--------- ----------- -------------
...
9 rows selected.

SQL> alter session set optimizer_capture_sql_plan_baselines = false;

Session altered.

SQL> select sql_text, plan_name, enabled, accepted from dba_sql_plan_baselines;

SQL_TEXT                                 PLAN_NAME                      ENA ACC
---------------------------------------- ------------------------------ --- ---
select p.prod_name, s.amount_sold, t.cal SYS_SQL_PLAN_fcc170b0a62d0f4d  YES YES
endar_year
from sales s, products p, times t
where s.prod_id = p.prod_id
and s.time_id = t.time_id
and p.prod_id < :pid

我们可以看到为该语句创建了一个SQL执行计划基线。假设语句再次被硬解析(我们在这里通过刷新共享池来实现)。让我们关闭SQL执行计划管理并使用不同的绑定值来执行查询:

SQL> exec :pid := 100000;

PL/SQL procedure successfully completed.

SQL> alter system flush shared_pool;

System altered.

SQL> alter session set optimizer_use_sql_plan_baselines = false;

Session altered.

SQL> select p.prod_name, s.amount_sold, t.calendar_year
2    from sales s, products p, times t
3    where s.prod_id = p.prod_id
4      and s.time_id = t.time_id
5      and p.prod_id < :pid;

PROD_NAME AMOUNT_SOLD CALENDAR_YEAR
--------- ----------- -------------
...
960 rows selected.

SQL> select * from table(dbms_xplan.display_cursor('bfbr3zrg9d5cc', 0, 'basic note'));

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------
EXPLAINED SQL STATEMENT:
------------------------
select p.prod_name, s.amount_sold, t.calendar_year from sales s,
products p, times t where s.prod_id = p.prod_id and s.time_id = t.time_id and
p.prod_id < :pid
Plan hash value: 2361178149

------------------------------------------
| Id  | Operation             | Name     |
------------------------------------------
|   0 | SELECT STATEMENT      |          |
|   1 |  HASH JOIN            |          |
|   2 |   HASH JOIN           |          |
|   3 |    PARTITION RANGE ALL|          |
|   4 |     TABLE ACCESS FULL | SALES    |
|   5 |    TABLE ACCESS FULL  | TIMES    |
|   6 |   TABLE ACCESS FULL   | PRODUCTS |
------------------------------------------

我们看到优化器选择了一个不同的执行计划,因为新的绑定变量的值使得谓词选择性变差了。让我们打开SQL执行计划管理并用同样的绑定变量值再次执行:

SQL> alter session set optimizer_use_sql_plan_baselines = true;

Session altered. 

SQL> select p.prod_name, s.amount_sold, t.calendar_year
2    from sales s, products p, times t
3    where s.prod_id = p.prod_id
4      and s.time_id = t.time_id
5      and p.prod_id < :pid;

PROD_NAME AMOUNT_SOLD CALENDAR_YEAR
--------- ----------- -------------
...
960 rows selected.

SQL> select * from table(dbms_xplan.display_cursor('bfbr3zrg9d5cc', 0, 'basic note'));

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------
EXPLAINED SQL STATEMENT:
------------------------
select p.prod_name, s.amount_sold, t.calendar_year from sales s,
products p, times t where s.prod_id = p.prod_id and s.time_id =
t.time_id and p.prod_id < :pid

Plan hash value: 2787970893
----------------------------------------------------------------
| Id  | Operation                             | Name           |
----------------------------------------------------------------
|   0 | SELECT STATEMENT                      |                |
|   1 |  NESTED LOOPS                         |                |
|   2 |   NESTED LOOPS                        |                |
|   3 |    HASH JOIN                          |                |
|   4 |     TABLE ACCESS BY INDEX ROWID       | PRODUCTS       |
|   5 |      INDEX RANGE SCAN                 | PRODUCTS_PK    |
|   6 |     PARTITION RANGE ALL               |                |
|   7 |      TABLE ACCESS BY LOCAL INDEX ROWID| SALES          |
|   8 |       BITMAP CONVERSION TO ROWIDS     |                |
|   9 |        BITMAP INDEX RANGE SCAN        | SALES_PROD_BIX |
|  10 |    INDEX UNIQUE SCAN                  | TIME_PK        |
|  11 |   TABLE ACCESS BY INDEX ROWID         | TIMES          |
----------------------------------------------------------------

Note
-----
- SQL plan baseline SYS_SQL_PLAN_fcc170b0a62d0f4d used for this statement

底部的NOTE部分告诉我们优化器使用了SQL plan baseline。换句话说, 我们可以看到优化器使用了SQL plan baseline中已接受的执行计划,而不是一个新的执行计划。实际上,我们还可以检查出优化器将新的执行计划插入到了语句的执行计划历史中:

SQL> select sql_text, plan_name, enabled, accepted      from dba_sql_plan_baselines; 

SQL_TEXT                                 PLAN_NAME                      ENA ACC
---------------------------------------- ------------------------------ --- ---
select p.prod_name, s.amount_sold, t.cal SYS_SQL_PLAN_fcc170b08cbcb825  YES NO
endar_year
from sales s, products p, times t
where s.prod_id = p.prod_id
  and s.time_id = t.time_id
  and p.prod_id < :pid

select p.prod_name, s.amount_sold, t.cal SYS_SQL_PLAN_fcc170b0a62d0f4d  YES YES
endar_year
from sales s, products p, times t
where s.prod_id = p.prod_id
  and s.time_id = t.time_id
  and p.prod_id < :pid

“ACCEPTED”列的“NO”值表示新执行计划在执行计划历史记录中,但在验证它是一个好计划之前不能使用。优化器将继续使用已接受的计划,直到新的计划被验证并添加到SQL计划基线中。如果SQL计划基线中有多个计划,优化器将使用在当前条件下(统计信息、绑定值、参数设置等)成本最佳的计划。

当为SQL语句创建SQL plan baseline时,SPM感知优化器因此而保证,不会使用SQL plan baseline中执行计划之外的,任何新的执行计划。这可以防止不期望的计划变化,这些变化有时会导致性能下降。

阻止新执行计划被使用是可以的,但是如果新计划实际上更好呢?在本系列博客中的第3篇中,我们将描述如何将新的和改进的执行计划添加到SQL执行计划基线中。

原文链接:https://blogs.oracle.com/optimizer/sql-plan-management-part-2-of-4-spm-aware-optimizer
原文内容:
SQL Plan Management (Part 2 of 4) SPM Aware Optimizer
Maria Colgan
Master Product Manager
In Part 1, we saw how you can create SQL plan baselines. After you create a SQL plan baseline for a statement, subsequent executions of that statement will use the SQL plan baseline. From all the plans in the SQL plan baseline, the optimizer will select the one with the best cost in the current environment (including bind values, current statistics, parameters, etc.). The optimizer will also generate the best-cost plan that it would otherwise have used without a SQL plan baseline. However, this best-cost plan will not be used but instead added to the statement’s plan history for later verification. In other words, the optimizer will use a known plan from the SQL plan baseline instead of a new and hitherto unknown plan. This guarantees no performance regression.

Let’s see this plan selection process in action. First, we create a SQL plan baseline by enabling automatic plan capture and executing the query twice:

SQL> alter session set optimizer_capture_sql_plan_baselines = true;

Session altered.

SQL> var pid number
SQL> exec :pid := 100;

PL/SQL procedure successfully completed.

SQL> select p.prod_name, s.amount_sold, t.calendar_year
2 from sales s, products p, times t 
3 where s.prod_id = p.prod_id 
4 and s.time_id = t.time_id
5 and p.prod_id < :pid;

PROD_NAME AMOUNT_SOLD CALENDAR_YEAR 
--------- ----------- -------------
...
9 rows selected.

SQL> select * from table(dbms_xplan.display_cursor('bfbr3zrg9d5cc', 0, 'basic note'));

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------
EXPLAINED SQL STATEMENT:
------------------------
select p.prod_name, s.amount_sold, t.calendar_year from sales s,
products p, times t where s.prod_id = p.prod_id and s.time_id =
t.time_id and p.prod_id < :pid

Plan hash value: 2787970893
----------------------------------------------------------------
| Id  | Operation                             | Name           |
----------------------------------------------------------------
|   0 | SELECT STATEMENT                      |                |
|   1 |  NESTED LOOPS                         |                |
|   2 |   NESTED LOOPS                        |                |
|   3 |    HASH JOIN                          |                |
|   4 |     TABLE ACCESS BY INDEX ROWID       | PRODUCTS       |
|   5 |      INDEX RANGE SCAN                 | PRODUCTS_PK    |
|   6 |     PARTITION RANGE ALL               |                |
|   7 |      TABLE ACCESS BY LOCAL INDEX ROWID| SALES          |
|   8 |       BITMAP CONVERSION TO ROWIDS     |                |
|   9 |        BITMAP INDEX RANGE SCAN        | SALES_PROD_BIX |
|  10 |    INDEX UNIQUE SCAN                  | TIME_PK        |
|  11 |   TABLE ACCESS BY INDEX ROWID         | TIMES          |
----------------------------------------------------------------

25 rows selected.

SQL> select p.prod_name, s.amount_sold, t.calendar_year
2    from sales s, products p, times t
3    where s.prod_id = p.prod_id
4      and s.time_id = t.time_id
5      and p.prod_id < :pid;

PROD_NAME AMOUNT_SOLD CALENDAR_YEAR
--------- ----------- -------------
...
9 rows selected.

SQL> alter session set optimizer_capture_sql_plan_baselines = false;

Session altered.

SQL> select sql_text, plan_name, enabled, accepted from dba_sql_plan_baselines;

SQL_TEXT                                 PLAN_NAME                      ENA ACC
---------------------------------------- ------------------------------ --- ---
select p.prod_name, s.amount_sold, t.cal SYS_SQL_PLAN_fcc170b0a62d0f4d  YES YES
endar_year
from sales s, products p, times t
where s.prod_id = p.prod_id
and s.time_id = t.time_id
and p.prod_id < :pid

We can see that a SQL plan baseline was created for the statement. Suppose the statement is hard parsed again (we do it here by flushing the shared pool). Let’s turn off SQL plan management and execute the query with a different bind value:

SQL> exec :pid := 100000;

PL/SQL procedure successfully completed.

SQL> alter system flush shared_pool;

System altered.

SQL> alter session set optimizer_use_sql_plan_baselines = false;

Session altered.

SQL> select p.prod_name, s.amount_sold, t.calendar_year
2    from sales s, products p, times t
3    where s.prod_id = p.prod_id
4      and s.time_id = t.time_id
5      and p.prod_id < :pid;

PROD_NAME AMOUNT_SOLD CALENDAR_YEAR
--------- ----------- -------------
...
960 rows selected.

SQL> select * from table(dbms_xplan.display_cursor('bfbr3zrg9d5cc', 0, 'basic note'));

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------
EXPLAINED SQL STATEMENT:
------------------------
select p.prod_name, s.amount_sold, t.calendar_year from sales s,
products p, times t where s.prod_id = p.prod_id and s.time_id = t.time_id and
p.prod_id < :pid
Plan hash value: 2361178149

------------------------------------------
| Id  | Operation             | Name     |
------------------------------------------
|   0 | SELECT STATEMENT      |          |
|   1 |  HASH JOIN            |          |
|   2 |   HASH JOIN           |          |
|   3 |    PARTITION RANGE ALL|          |
|   4 |     TABLE ACCESS FULL | SALES    |
|   5 |    TABLE ACCESS FULL  | TIMES    |
|   6 |   TABLE ACCESS FULL   | PRODUCTS |
------------------------------------------

We can see that the optimizer selected a different plan because the new bind value makes the predicate less selective. Let’s turn SQL plan management back on and re-execute the query with the same bind value:

SQL> alter session set optimizer_use_sql_plan_baselines = true;

Session altered. 

SQL> select p.prod_name, s.amount_sold, t.calendar_year
2    from sales s, products p, times t
3    where s.prod_id = p.prod_id
4      and s.time_id = t.time_id
5      and p.prod_id < :pid;

PROD_NAME AMOUNT_SOLD CALENDAR_YEAR
--------- ----------- -------------
...
960 rows selected.

SQL> select * from table(dbms_xplan.display_cursor('bfbr3zrg9d5cc', 0, 'basic note'));

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------
EXPLAINED SQL STATEMENT:
------------------------
select p.prod_name, s.amount_sold, t.calendar_year from sales s,
products p, times t where s.prod_id = p.prod_id and s.time_id =
t.time_id and p.prod_id < :pid

Plan hash value: 2787970893
----------------------------------------------------------------
| Id  | Operation                             | Name           |
----------------------------------------------------------------
|   0 | SELECT STATEMENT                      |                |
|   1 |  NESTED LOOPS                         |                |
|   2 |   NESTED LOOPS                        |                |
|   3 |    HASH JOIN                          |                |
|   4 |     TABLE ACCESS BY INDEX ROWID       | PRODUCTS       |
|   5 |      INDEX RANGE SCAN                 | PRODUCTS_PK    |
|   6 |     PARTITION RANGE ALL               |                |
|   7 |      TABLE ACCESS BY LOCAL INDEX ROWID| SALES          |
|   8 |       BITMAP CONVERSION TO ROWIDS     |                |
|   9 |        BITMAP INDEX RANGE SCAN        | SALES_PROD_BIX |
|  10 |    INDEX UNIQUE SCAN                  | TIME_PK        |
|  11 |   TABLE ACCESS BY INDEX ROWID         | TIMES          |
----------------------------------------------------------------

Note
-----
- SQL plan baseline SYS_SQL_PLAN_fcc170b0a62d0f4d used for this statement

The note at the bottom tells you that the optimizer is using the SQL plan baseline. In other words, we can see that the optimizer used an accepted plan in the SQL plan baseline in favor of a new plan. In fact, we can also check that the optimizer inserted the new plan into the statement’s plan history:

SQL> select sql_text, plan_name, enabled, accepted      from dba_sql_plan_baselines; 

SQL_TEXT                                 PLAN_NAME                      ENA ACC
---------------------------------------- ------------------------------ --- ---
select p.prod_name, s.amount_sold, t.cal SYS_SQL_PLAN_fcc170b08cbcb825  YES NO
endar_year
from sales s, products p, times t
where s.prod_id = p.prod_id
  and s.time_id = t.time_id
  and p.prod_id < :pid

select p.prod_name, s.amount_sold, t.cal SYS_SQL_PLAN_fcc170b0a62d0f4d  YES YES
endar_year
from sales s, products p, times t
where s.prod_id = p.prod_id
  and s.time_id = t.time_id
  and p.prod_id < :pid

The ‘NO’ value for the accepted column implies that the new plan is in the plan history but is not available for use until it is verified to be a good plan. The optimizer will continue to use an accepted plan until new plans are verified and added to the SQL plan baseline. If there is more than one plan in the SQL plan baseline, the optimizer will use the one with the best cost under the then-current conditions (statistics, bind values, parameter settings and so on).

When you create a SQL plan baseline for a SQL statement, the SPM aware optimizer thus guarantees that no new plans will be used other than the ones in the SQL plan baseline. This prevents unexpected plan changes that sometimes lead to performance regressions.

Preventing new plans from being used is fine, but what if the new plans are in fact better? In Part 3, we will describe how new and improved plans are added to a SQL plan baseline.

最后修改时间:2021-09-20 11:26:45
「喜欢这篇文章,您的关注和赞赏是给作者最好的鼓励」
关注作者
【版权声明】本文为墨天轮用户原创内容,转载时必须标注文章的来源(墨天轮),文章链接,文章作者等基本信息,否则作者和墨天轮有权追究责任。如果您发现墨天轮中有涉嫌抄袭或者侵权的内容,欢迎发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论