1.算数函数
--求和
SELECT plus(9, 88)as "plus 9+88", plus(10, -10) as "plus 10-10", plus(-10, -10) as " plus-10-10";
┌─plus 9+88─┬─plus 10-10─┬─ plus-10-10─┐
│ 97 │ 0 │ -20 │
└───────────┴────────────┴─────────────┘
--差值
SELECT minus(10, 5)as "minus 10-5 ", minus(10, -10)as "minus 10-(-10)",minus(-10, -10)as "minus -10-(-10)";
┌─minus 10-5 ─┬─minus 10-(-10)─┬─minus -10-(-10)─┐
│ 5 │ 20 │ 0 │
└─────────────┴────────────────┴────────────-────┘
--积
SELECT multiply(12, 2), multiply(12, -2), multiply(-12, -2);
┌─multiply(12, 2)─┬─multiply(12, -2)─┬─multiply(-12, -2)─┐
│ 24 │ -24 │ 24 │
└─────────────────┴──────────────────┴───────────────────┘
--平均值
SELECT divide(12, 4), divide(10, 3), divide(2, 4), divide(-4, -2), divide(-4, 2), divide(-4.5, 3);
┌─divide(12, 4)─┬──────divide(10, 3)─┬─divide(2, 4)─┬─divide(-4, -2)─┬─divide(-4, 2)─┬─divide(-4.5, 3)─┐
│ 3 │ 3.3333333333333335 │ 0.5 │ 2 │ -2 │ -1.5 │
└───────────────┴────────────────────┴──────────────┴────────────────┴───────────────┴─────────────────┘
SELECT intDiv(10, 3), divide(10, 3);
┌─intDiv(10, 3)─┬──────divide(10, 3)─┐
│ 3 │ 3.3333333333333335 │
└───────────────┴────────────────────┘
SELECT divide(10, 0), divide(-10, 0); -- 出现无穷大字符“ ∞ ”或“ -∞ ”
┌─divide(10, 0)─┬─divide(-10, 0)─┐
│ inf │ -inf │
└───────────────┴────────────────┘
SELECT divide(0, 0); -- 特殊字符(类似乱码)
┌─divide(0, 0)─┐
│ nan │
└──────────────┘
SELECT intDivOrZero(10, 0); -- 0
┌─intDivOrZero(10, 0)─┐
│ 0 │
└─────────────────────┘
--求余数
SELECT modulo(10, 3);
┌─modulo(10, 3)─┐
│ 1 │
└───────────────┘
SELECT modulo(10.5, 3);
┌─modulo(10.5, 3)─┐
│ 1.5 │
└─────────────────┘
--取反
SELECT negate(10), negate(-10);
┌─negate(10)─┬─negate(-10)─┐
│ -10 │ 10 │
└────────────┴─────────────┘
--绝对值
SELECT abs(-10), abs(10);
┌─abs(-10)─┬─abs(10)─┐
│ 10 │ 10 │
└──────────┴─────────┘
--最大公约数
SELECT gcd(12, 24), gcd(-12, -24), gcd(-12, 24);
┌─gcd(12, 24)─┬─gcd(-12, -24)─┬─gcd(-12, 24)─┐
│ 12 │ 12 │ 12 │
└─────────────┴───────────────┴──────────────┘
--最小公倍数
SELECT lcm(12, 24), lcm(-12, -24), lcm(-3, 4);
┌─lcm(12, 24)─┬─lcm(-12, -24)─┬─lcm(-3, 4)─┐
│ 24 │ 24 │ 12 │
└─────────────┴───────────────┴────────────┘
复制
2.比较函数
-->>>>>> 比较函数(始终返回0表示false 或 1表示true)
SELECT 12 == 12, 12 != 10, 12 == 132, 12 != 12, 12 <> 12;
┌─equals(12, 12)─┬─notEquals(12, 10)─┬─equals(12, 132)─┬─notEquals(12, 12)─┬─notEquals(12, 12)─┐
│ 1 │ 1 │ 0 │ 0 │ 0 │
└────────────────┴───────────────────┴─────────────────┴───────────────────┴───────────────────┘
SELECT equals(12, 12), notEquals(12, 10), equals(12, 10), notEquals(12,123);
┌─equals(12, 12)─┬─notEquals(12, 10)─┬─equals(12, 10)─┬─notEquals(12, 123)─┐
│ 1 │ 1 │ 0 │ 1 │
└────────────────┴───────────────────┴────────────────┴────────────────────┘
SELECT greater(12, 10), greater(10, 12), greater(12, 12);
┌─greater(12, 10)─┬─greater(10, 12)─┬─greater(12, 12)─┐
│ 1 │ 0 │ 0 │
└─────────────────┴─────────────────┴─────────────────┘
SELECT greaterOrEquals(12,10), greaterOrEquals(12,12);
┌─greaterOrEquals(12, 10)─┬─greaterOrEquals(12, 12)─┐
│ 1 │ 1 │
└─────────────────────────┴─────────────────────────┘
SELECT less(12, 21), less(12, 10), less(120, 120);
┌─less(12, 21)─┬─less(12, 10)─┬─less(120, 120)─┐
│ 1 │ 0 │ 0 │
└──────────────┴──────────────┴────────────────┘
SELECT lessOrEquals(12, 120), lessOrEquals(12, 12);
┌─lessOrEquals(12, 120)─┬─lessOrEquals(12, 12)─┐
│ 1 │ 1 │
└───────────────────────┴──────────────────────┘
复制
3.逻辑函数
-->>>>>> 逻辑操作符(返回0表示false 或 1表示true)
SELECT 12==12 or 12!=10;
SELECT 12==12 and 12!=10;
SELECT not 12, not 0;
SELECT or(equals(12, 12), notEquals(12, 10)); --函数表示法:或
SELECT and(equals(12, 12), notEquals(12, 10));--函数表示法:且
SELECT not(12), not(0);
复制
4.类型转换函数
SELECT toInt8(12.3334343), toFloat32(10.001), toFloat64(1.000040);
SELECT toString(now());
SELECT now() AS now_local, toString(now(), 'Asia/Yekaterinburg') AS now_yekat;
SELECT now() AS now_local, toDate(now()), toDateTime(now()), toUnixTimestamp(now());
SELECT '2021-03-31 16:00:00' AS timestamp, CAST(timestamp AS DateTime) AS datetime, CAST(timestamp AS Date) AS date, CAST(timestamp, 'String') AS string, CAST(timestamp, 'FixedString(22)') AS fixed_string;
┌─timestamp───────────┬────────────datetime─┬───────date─┬─string──────────────┬─fixed_string────────┐
│ 2021-03-31 16:00:00 │ 2021-03-31 16:00:00 │ 2021-03-31 │ 2021-03-31 16:00:00 │ 2021-03-31 16:00:00 │
└─────────────────────┴─────────────────────┴────────────┴─────────────────────┴─────────────────────┘
WITH
toDate('2021-03-31') AS date,
toIntervalWeek(1) AS interval_week,
toIntervalWeek(1) AS interval_to_week,
toIntervalMonth(1) AS interval_to_month
SELECT
date + interval_week,
date + interval_to_week,
date + interval_to_month;
┌─plus(date, interval_week)─┬─plus(date, interval_to_week)─┬─plus(date, interval_to_month)─┐
│ 2021-04-07 │ 2021-04-07 │ 2021-04-30 │
└───────────────────────────┴──────────────────────────────┴───────────────────────────────┘
WITH
toDateTime('2021-03-31 12:10:10') AS datetime,
toIntervalHour(1) AS interval_hour,
toIntervalHour(1) AS invterval_to_hour
SELECT
datetime + interval_hour,
datetime + invterval_to_hour;
┌─plus(datetime, interval_hour)─┬─plus(datetime, invterval_to_hour)─┐
│ 2021-03-31 13:10:10 │ 2021-03-31 13:10:10 │
└───────────────────────────────┴───────────────────────────────────┘
复制
5.时间日期函数
SELECT
toDateTime('2019-07-30 10:10:10') AS time,
toUnixTimestamp(time) as unixTimestamp,
toDate(time) as date_local,
toTime(time) as date_time,
toMonth(time) as get_month,
toQuarter(time) as get_quarter,
toHour(time) as get_hour,
toMinute(time) as get_minute,
toSecond(time) as get_second,
toDayOfYear(time) as "当前年份中的第几天",
toDayOfMonth(time) as "当前月份的第几天",
toDayOfWeek(time) as "星期",
toDate(time, 'Asia/Shanghai') AS date_shanghai,
toDateTime(time, 'Asia/Shanghai') AS time_shanghai,
toStartOfYear(time),
toStartOfMonth(time),
toStartOfQuarter(time),
toStartOfDay(time) AS cur_start_daytime,
toStartOfHour(time) as cur_start_hour,
toStartOfMinute(time) AS cur_start_minute,
toRelativeYearNum(time),
toRelativeQuarterNum(time)\G
Row 1:
──────
time: 2021-03-31 10:10:10
unixTimestamp: 1617156610
date_local: 2021-03-31
date_time: 1970-01-02 10:10:10
get_month: 3
get_quarter: 1
get_hour: 10
get_minute: 10
get_second: 10
当前年份中的第几天: 90
当前月份的第几天: 31
星期: 3
date_shanghai: 2021-03-31
time_shanghai: 2021-03-31 10:10:10
toStartOfYear(toDateTime('2021-03-31 10:10:10')): 2021-01-01
toStartOfMonth(toDateTime('2021-03-31 10:10:10')): 2021-03-01
toStartOfQuarter(toDateTime('2021-03-31 10:10:10')): 2021-01-01
cur_start_daytime: 2021-03-31 00:00:00
cur_start_hour: 2021-03-31 10:00:00
cur_start_minute: 2021-03-31 10:10:00
toRelativeYearNum(toDateTime('2021-03-31 10:10:10')): 2021
toRelativeQuarterNum(toDateTime('2021-03-31 10:10:10')): 8084
SELECT
toDateTime('2019-07-30 14:27:30') as time,
toISOYear(time) AS iso_year,
toISOWeek(time) AS iso_week,
now() AS cur_dateTime1,
today() AS cur_dateTime2,
yesterday() AS yesterday,
toDate(time) as getY_M_d;
┌────────────────time─┬─iso_year─┬─iso_week─┬───────cur_dateTime1─┬─cur_dateTime2─┬──yesterday─┬───getY_M_d─┐
│ 2019-07-30 14:27:30 │ 2019 │ 31 │ 2021-03-31 16:48:13 │ 2021-03-31 │ 2021-03-30 │ 2019-07-30 │
└─────────────────────┴──────────┴──────────┴─────────────────────┴───────────────┴────────────┴────────────┘
SELECT
now() as nowTime,
toYYYYMMDDhhmmss(nowTime),
toYYYYMMDD(nowTime),
toYYYYMM(nowTime);
┌─────────────nowTime─┬─toYYYYMMDDhhmmss(now())─┬─toYYYYMMDD(now())─┬─toYYYYMM(now())─┐
│ 2021-03-31 16:48:48 │ 20210331164848 │ 20210331 │ 202103 │
└─────────────────────┴─────────────────────────┴───────────────────┴─────────────────┘
SELECT
now() as now_time,
toDateTime('2019-07-31 18:20:30') AS def_datetime,
formatDateTime(now_time, '%D') AS now_time_day_month_year,
formatDateTime(def_datetime, '%Y') AS def_datetime_year,
formatDateTime(def_datetime, '%y') AS def_datetime_year_litter,
formatDateTime(def_datetime, '%H') AS hour24,
formatDateTime(def_datetime, '%I') AS hour12,
formatDateTime(def_datetime, '%p') AS PMorAM,
formatDateTime(def_datetime, '%w') AS def_datetime_get_curWeek,
formatDateTime(def_datetime, '%F') AS def_datetime_get_date,
formatDateTime(def_datetime, '%T') AS def_datetime_get_time,
formatDateTime(def_datetime, '%M') AS def_datetime_get_minute,
formatDateTime(def_datetime, '%S') AS def_datetime_get_second;
Row 1:
──────
now_time: 2021-03-31 16:51:02
def_datetime: 2019-07-31 18:20:30
now_time_day_month_year: 03/31/21
def_datetime_year: 2019
def_datetime_year_litter: 19
hour24: 18
hour12: 06
PMorAM: PM
def_datetime_get_curWeek: 3
def_datetime_get_date: 2019-07-31
def_datetime_get_time: 18:20:30
def_datetime_get_minute: 20
def_datetime_get_second: 30
-- 1.跳转到之后的日期函数
-- 第一种,日期格式(指定日期,需注意时区的问题)
WITH
toDate('2021-03-29') AS date,
toDateTime('2021-03-29 00:00:00') AS date_time
SELECT
addYears(date, 1) AS add_years_with_date,
addYears(date_time, 0) AS add_years_with_date_time;
┌─add_years_with_date─┬─add_years_with_date_time─┐
│ 2022-03-29 │ 2021-03-29 00:00:00 │
└─────────────────────┴──────────────────────────┘
-- 第二种,日期格式(当前,本地时间)
WITH
toDate(now()) as date,
toDateTime(now()) as date_time
SELECT
now() as now_time,
addYears(date, 1) AS add_years_with_date,
addYears(date_time, 1) AS add_years_with_date_time,
addMonths(date, 1) AS add_months_with_date,
addMonths(date_time, 1) AS add_months_with_date_time,
addWeeks(date, 1) AS add_weeks_with_date,
addWeeks(date_time, 1) AS add_weeks_with_date_time,
addDays(date, 1) AS add_days_with_date,
addDays(date_time, 1) AS add_days_with_date_time,
addHours(date_time, 1) AS add_hours_with_date_time,
addMinutes(date_time, 1) AS add_minutes_with_date_time,
addSeconds(date_time, 10) AS add_seconds_with_date_time,
addQuarters(date, 1) AS add_quarters_with_date,
addQuarters(date_time, 1) AS add_quarters_with_date_time;
Row 1:
──────
now_time: 2021-03-31 16:53:59
add_years_with_date: 2022-03-31
add_years_with_date_time: 2022-03-31 16:53:59
add_months_with_date: 2021-04-30
add_months_with_date_time: 2021-04-30 16:53:59
add_weeks_with_date: 2021-04-07
add_weeks_with_date_time: 2021-04-07 16:53:59
add_days_with_date: 2021-04-01
add_days_with_date_time: 2021-04-01 16:53:59
add_hours_with_date_time: 2021-03-31 17:53:59
add_minutes_with_date_time: 2021-03-31 16:54:59
add_seconds_with_date_time: 2021-03-31 16:54:09
add_quarters_with_date: 2021-06-30
add_quarters_with_date_time: 2021-06-30 16:53:59
-- 2.跳转到当前日期之前的函数(函数将Date/DateTime减去一段时间间隔,然后返回Date/DateTime)
WITH
toDate(now()) as date,
toDateTime(now()) as date_time
SELECT
subtractYears(date, 1) AS subtract_years_with_date,
subtractYears(date_time, 1) AS subtract_years_with_date_time,
subtractQuarters(date, 1) AS subtract_Quarters_with_date,
subtractQuarters(date_time, 1) AS subtract_Quarters_with_date_time,
subtractMonths(date, 1) AS subtract_Months_with_date,
subtractMonths(date_time, 1) AS subtract_Months_with_date_time,
subtractWeeks(date, 1) AS subtract_Weeks_with_date,
subtractWeeks(date_time, 1) AS subtract_Weeks_with_date_time,
subtractDays(date, 1) AS subtract_Days_with_date,
subtractDays(date_time, 1) AS subtract_Days_with_date_time,
subtractHours(date_time, 1) AS subtract_Hours_with_date_time,
subtractMinutes(date_time, 1) AS subtract_Minutes_with_date_time,
subtractSeconds(date_time, 1) AS subtract_Seconds_with_date_time;
Row 1:
──────
subtract_years_with_date: 2020-03-31
subtract_years_with_date_time: 2020-03-31 16:59:16
subtract_Quarters_with_date: 2020-12-31
subtract_Quarters_with_date_time: 2020-12-31 16:59:16
subtract_Months_with_date: 2021-02-28
subtract_Months_with_date_time: 2021-02-28 16:59:16
subtract_Weeks_with_date: 2021-03-24
subtract_Weeks_with_date_time: 2021-03-24 16:59:16
subtract_Days_with_date: 2021-03-30
subtract_Days_with_date_time: 2021-03-30 16:59:16
subtract_Hours_with_date_time: 2021-03-31 15:59:16
subtract_Minutes_with_date_time: 2021-03-31 16:58:16
subtract_Seconds_with_date_time: 2021-03-31 16:59:15
-- 计算连个时刻在不同时间单位下的差值
-- 第一种:指定时间计算差值示例
WITH
toDateTime('2019-07-30 10:10:10', 'Asia/Shanghai') as date_shanghai_one,
toDateTime('2020-10-31 11:20:30', 'Asia/Shanghai') as date_shanghai_two
SELECT
dateDiff('year', date_shanghai_one, date_shanghai_two) as diff_years,
dateDiff('month', date_shanghai_one, date_shanghai_two) as diff_months,
dateDiff('week', date_shanghai_one, date_shanghai_two) as diff_week,
dateDiff('day', date_shanghai_one, date_shanghai_two) as diff_days,
dateDiff('hour', date_shanghai_one, date_shanghai_two) as diff_hours,
dateDiff('minute', date_shanghai_one, date_shanghai_two) as diff_minutes,
dateDiff('second', date_shanghai_one, date_shanghai_two) as diff_seconds;
┌─diff_years─┬─diff_months─┬─diff_week─┬─diff_days─┬─diff_hours─┬─diff_minutes─┬─diff_seconds─┐
│ 1 │ 15 │ 65 │ 459 │ 11017 │ 661030 │ 39661820 │
└────────────┴─────────────┴───────────┴───────────┴────────────┴──────────────┴──────────────┘
-- 第二种:本地当前时间示例
WITH
toDateTime('2020-07-30 10:10:10', 'Asia/Shanghai') AS date_shanghai_one,
toDateTime('2021-03-31 11:20:30', 'Asia/Shanghai') AS date_shanghai_two
SELECT
dateDiff('year', date_shanghai_one, date_shanghai_two) AS diff_years,
dateDiff('month', date_shanghai_one, date_shanghai_two) AS diff_months,
dateDiff('week', date_shanghai_one, date_shanghai_two) AS diff_week,
dateDiff('day', date_shanghai_one, date_shanghai_two) AS diff_days,
dateDiff('hour', date_shanghai_one, date_shanghai_two) AS diff_hours,
dateDiff('minute', date_shanghai_one, date_shanghai_two) AS diff_minutes,
dateDiff('second', date_shanghai_one, date_shanghai_two) AS diff_seconds;
┌─diff_years─┬─diff_months─┬─diff_week─┬─diff_days─┬─diff_hours─┬─diff_minutes─┬─diff_seconds─┐
│ 1 │ 8 │ 35 │ 244 │ 5857 │ 351430 │ 21085820 │
└────────────┴─────────────┴───────────┴───────────┴────────────┴──────────────┴──────────────┘
-- timeSlot(StartTime, Duration, [,Size])
-- 它返回一个时间数组,其中包括从从“StartTime”开始到“StartTime + Duration 秒”内的所有符合“size”(以秒为单位)步长的时间点
-- 作用:搜索在相应会话中综合浏览量是非常有用的。
SELECT
timeSlots(toDateTime('2012-01-01 12:20:00'), toUInt32(600)) AS dateTimeArray,
dateTimeArray[0] AS arr_index_0,
dateTimeArray[1] AS arr_index_1,
dateTimeArray[2] AS arr_index_2,
dateTimeArray[3] AS arr_index_3,
dateTimeArray[4] AS arr_index_4
Row 1:
──────
dateTimeArray: ['2012-01-01 12:00:00','2012-01-01 12:30:00']
arr_index_0: 1970-01-01 08:00:00
arr_index_1: 2012-01-01 12:00:00
arr_index_2: 2012-01-01 12:30:00
arr_index_3: 1970-01-01 08:00:00
arr_index_4: 1970-01-01 08:00:00
SELECT
timeSlots(now(), toUInt32(600), 20) as dateTimeArray,
dateTimeArray[1] as arr_index_1,
dateTimeArray[2] as arr_index_2,
dateTimeArray[3] as arr_index_3,
dateTimeArray[4] as arr_index_4,
dateTimeArray[5] as arr_index_5;
Row 1:
──────
dateTimeArray: ['2021-03-31 17:04:20','2021-03-31 17:04:40','2021-03-31 17:05:00','2021-03-31 17:05:20','2021-03-31 17:05:40','2021-03-31 17:06:00','2021-03-31 17:06:20','2021-03-31 17:06:40','2021-03-31 17:07:00','2021-03-31 17:07:20','2021-03-31 17:07:40','2021-03-31 17:08:00','2021-03-31 17:08:20','2021-03-31 17:08:40','2021-03-31 17:09:00','2021-03-31 17:09:20','2021-03-31 17:09:40','2021-03-31 17:10:00','2021-03-31 17:10:20','2021-03-31 17:10:40','2021-03-31 17:11:00','2021-03-31 17:11:20','2021-03-31 17:11:40','2021-03-31 17:12:00','2021-03-31 17:12:20','2021-03-31 17:12:40','2021-03-31 17:13:00','2021-03-31 17:13:20','2021-03-31 17:13:40','2021-03-31 17:14:00','2021-03-31 17:14:20']
arr_index_1: 2021-03-31 17:04:20
arr_index_2: 2021-03-31 17:04:40
arr_index_3: 2021-03-31 17:05:00
arr_index_4: 2021-03-31 17:05:20
arr_index_5: 2021-03-31 17:05:40
-- 指定时间为基准,之后每个元素增加20秒
SELECT
timeSlots(toDateTime('2012-01-01 12:20:00'), toUInt32(600), 20) as cur_dateTimeArray,
cur_dateTimeArray[0] as arr_index_0,
cur_dateTimeArray[1] as arr_index_1,
cur_dateTimeArray[2] as arr_index_2,
cur_dateTimeArray[3] as arr_index_3,
cur_dateTimeArray[4] as arr_index_4,
cur_dateTimeArray[5] as arr_index_5;
复制
6.字符串函数
SELECT
length('hello world') as str_length,
empty('hello world'),
notEmpty('hello world'),
lengthUTF8('hello world'),
char_length('hello world'),
character_length('hello world'),
lower('abcd123--'),
upper('abcd123--'),
lowerUTF8('abcd123-/*\8asd-\\'),
upperUTF8('abcd123--'),
isValidUTF8('abcd123--/*\*');
SELECT notEmpty(''), notEmpty(NULL), notEmpty('he');
str_length: 11
empty('hello world'): 0
notEmpty('hello world'): 1
lengthUTF8('hello world'): 11
char_length('hello world'): 11
character_length('hello world'): 11
lower('abcd123--'): abcd123--
upper('abcd123--'): ABCD123--
lowerUTF8('abcd123-/*\\8asd-\\'): abcd123-/*\8asd-\
upperUTF8('abcd123--'): ABCD123--
isValidUTF8('abcd123--/*\\*'): 1
-- 2.字符串维度自定义安排
SELECT format('{1} {0} {1}', 'World', 'Hello')
┌─format('{1} {0} {1}', 'World', 'Hello')─┐
│ Hello World Hello │
└─────────────────────────────────────────┘
SELECT format('{0} {0} {1} {1}', 'one', 'two');
┌─format('{0} {0} {1} {1}', 'one', 'two')─┐
│ one one two two │
└─────────────────────────────────────────┘
SELECT format('{} {}', 'Hello', 'World');
┌─format('{} {}', 'Hello', 'World')─┐
│ Hello World │
└───────────────────────────────────┘
-- 3.字符串拼接 concat(s1,s2,s3,...)
SELECT concat('Hello',' ','World', '!');
┌─concat('Hello', ' ', 'World', '!')─┐
│ Hello World! │
└────────────────────────────────────┘
SELECT concatAssumeInjective('Hello',' ','World', '!');
┌─concatAssumeInjective('Hello', ' ', 'World', '!')─┐
│ Hello World! │
└───────────────────────────────────────────────────┘
-- 4.字符串截取:substring(s, offset, length), mid(s, offset, length), substr(s, offset, length)
-- 以字节为单位截取指定位置字符串,返回以‘offset’位置为开头,长度为‘length’的子串。‘offset’从1开始(与标准SQL相同)。‘offset’和‘length’参数必须是常量。
SELECT
substring('abcdefg', 1, 3),
substring('你好,世界', 1, 3),
substringUTF8('你好,世界', 1, 3)
┌─substring('abcdefg', 1, 3)─┬─substring('你好,世界', 1, 3)─┬─substringUTF8('你好,世界', 1, 3)─┐
│ abc │ 你 │ 你好, │
└────────────────────────────┴───────────────────────────────┴───────────────────────────────────┘
-- 5.字符串拼接:appendTrailingCharIfAbsent(s, c)
-- 如果‘s’字符串非空并且末尾不包含‘c’字符,则将‘c’字符附加到末尾。
SELECT
appendTrailingCharIfAbsent('good', 'c'),
appendTrailingCharIfAbsent('goodccc', 'c')
┌─appendTrailingCharIfAbsent('good', 'c')─┬─appendTrailingCharIfAbsent('goodccc', 'c')─┐
│ goodc │ goodccc │
└─────────────────────────────────────────┴────────────────────────────────────────────┘
-- 6.字符串编码转换:convertCharset(s, from, to) 返回从‘from’中的编码转换为‘to’中的编码的字符串‘s’。
SELECT
convertCharset('hello', 'UTF8', 'Unicode'),
convertCharset('hello', 'Unicode', 'UTF8'),
convertCharset('hello', 'Unicode', 'ASCII'),
convertCharset('hello', 'ascii', 'ascii'),
convertCharset('hello', 'UTF8', 'UTF8')
Row 1:
──────
convertCharset('hello', 'UTF8', 'Unicode'): ÿþhello
convertCharset('hello', 'Unicode', 'UTF8'): 桥汬�
convertCharset('hello', 'Unicode', 'ASCII'):
convertCharset('hello', 'ascii', 'ascii'): hello
convertCharset('hello', 'UTF8', 'UTF8'): hello
SELECT
base64Encode('username+password'),
base64Decode('dXNlcm5hbWUrcGFzc3dvcmQ='),
tryBase64Decode('dXNlcm5hbWUrcGFzc3dvcmQ=')
┌─base64Encode('username+password')─┬─base64Decode('dXNlcm5hbWUrcGFzc3dvcmQ=')─┬─tryBase64Decode('dXNlcm5hbWUrcGFzc3dvcmQ=')─┐
│ dXNlcm5hbWUrcGFzc3dvcmQ= │ username+password │ username+password │
└───────────────────────────────────┴──────────────────────────────────────────┴─────────────────────────────────────────────┘
-- 7.判断字符串是否已什么结尾或结束,返回1:true,0:flase
-- endsWith(s, suffix) 返回是否以指定的后缀结尾。如果字符串以指定的后缀结束,则返回1,否则返回0
-- startWith(s, prefix) 返回是否以指定的前缀开头。如果字符串以指定的前缀开头,则返回1,否则返回0。
SELECT
endsWith('string', 'g'),
startsWith('string', 'str')
┌─endsWith('string', 'g')─┬─startsWith('string', 'str')─┐
│ 1 │ 1 │
└─────────────────────────┴─────────────────────────────┘
-- 8.删除左侧空白字符
-- trimLeft(s) 返回一个字符串,用于删除左侧的空白字符
-- trimRight(s) 返回一个字符串,用于删除右侧的空白字符
-- trimBoth(s) 返回一个字符串,用于删除左侧和右侧的空白字符
SELECT
trimLeft(' sdfdgs'),
trimRight('abcd '),
trimBoth(' abcd ')
┌─trimLeft(' sdfdgs')─┬─trimRight('abcd ')─┬─trimBoth(' abcd ')─┐
│ sdfdgs │ abcd │ abcd │
└─────────────────────┴────────────────────┴────────────────────┘
复制
7.字符串搜索函数
-- pasition(haystack, needle), 显示needle在haystack的第一个出现的位置。
SELECT
POSITION('2121stringstrstrstrstr', 'str') AS positionSearch,
POSITION('你好,hello,12323-你好,你,好sdfd*dg', '你,好'),
positionUTF8('n12你好', '你好') AS positionUTF8,
positionCaseInsensitive('ABCDCDEFABCD', 'bc') AS positionCaseInsensitive,
locate('hellohellohellohello', 'ello')
Row 1:
──────
positionSearch: 5
POSITION('你好,hello,12323-你好,你,好sdfd*dg', '你,好'): 31
positionUTF8: 4
positionCaseInsensitive: 2
locate('hellohellohellohello', 'ello'): 2
-- multiSearchAllPositions(haystack, [needle1, needle2, ..., needlen])
-- 注意:在所有multiSearch*函数中,由于实现规范,needles的数量应小于2^8。
-- 函数返回一个数组,其中包含所有匹配needlei的位置
SELECT
multiSearchAllPositions('goodnamegoodnamegoodhellohihihi', ['dn', 'good']) AS multiSearch,
multiSearchAllPositionsCaseInsensitive('nameSsdfagpSSDFDFetgfderef', ['SS', 'fa']) AS multiCaseInsensitive,
multiSearchAllPositionsUTF8('nameSsdfazz轴功率gpSSDFDFetgfderef', ['Ss', 'fa', 'zz轴']) AS multiSearchUTF8,
multiSearchAllPositionsCaseInsensitiveUTF8('nameSsdfazz轴功率gpSSDFDFetgfderef', ['Ss', 'fa', 'zz轴']) AS multiCaseInsensitiveUTF8
┌─multiSearch─┬─multiCaseInsensitive─┬─multiSearchUTF8─┬─multiCaseInsensitiveUTF8─┐
│ [4,1] │ [5,8] │ [5,8,10] │ [5,8,10] │
└─────────────┴──────────────────────┴─────────────────┴──────────────────────────┘
-- 检查字符串是否与pattern正则表达式匹配。pattern可以是一个任意的re2正则表达式。re2正则表达式的语法比Perl正则表达式的语法存在更多限制。
-- match(haystack, pattern) 匹配到了则返回1,否则返回0
SELECT
match('1232434sadgaDDFSrefds', '[0-9a-zA-Z]'),
match('1232321', '[a-z]')
┌─match('1232434sadgaDDFSrefds', '[0-9a-zA-Z]')─┬─match('1232321', '[a-z]')─┐
│ 1 │ 0 │
└───────────────────────────────────────────────┴───────────────────────────┘
-- 与match相同,但如果所有正则表达式都不匹配,则返回0;如果任何模式匹配,则返回1。它使用hyperscan库。对于在字符串中搜索子字符串的模式,最好使用“multisearchany”,因为它更高效。
-- multiMatchAny(haystack, [pattern1, pattern2, ..., patternn])
-- 注意:任何haystack字符串的长度必须小于232字节,否则抛出异常。这种限制是因为hyperscan API而产生的。
-- 多个正则表达式对原始字符进行匹配,如若只有一个正则表达式匹配上了则返回1,否则返回0
SELECT
multiMatchAny('abcABC', ['[0-9]', '[a-zA-Z]']) AS multiMatchAnyOne,
multiMatchAny('123abcABC', ['[0-9]', '[a-zA-Z]']) AS multiMatchAnyTwo,
multiMatchAnyIndex('123abcABC', ['[0-9]', '[a-zA-Z]']) AS multiMatchAnyIndex
┌─multiMatchAnyOne─┬─multiMatchAnyTwo─┬─multiMatchAnyIndex─┐
│ 1 │ 1 │ 1 │
└──────────────────┴──────────────────┴────────────────────┘
-- 模糊匹配:like()函数,注意大写敏感。
-- % 表示任何字节数(包括零字符)
-- _ 表示任何一个字节
SELECT
'hello' LIKE '%h%' AS LIKE_UP,
'hello' LIKE 'he' AS like_low,
'hello' NOT LIKE 'he' AS not_like,
'hello' LIKE '%he%' AS like_litter,
'adgadgadfa1232' LIKE '_12_' AS like_func,
'sdfasdfasd' LIKE '[a-z]' AS like_func2,
'1232423' NOT LIKE '[a-zA-Z]' AS not_like_func
┌─LIKE_UP─┬─like_low─┬─not_like─┬─like_litter─┬─like_func─┬─like_func2─┬─not_like_func─┐
│ 1 │ 0 │ 1 │ 1 │ 0 │ 0 │ 1 │
└─────────┴──────────┴──────────┴─────────────┴───────────┴────────────┴───────────────┘
-- 使用字符串截取字符串:extract(haystack, pattern)
-- 使用正则表达式截取字符串。如果‘haystack’与‘pattern’不匹配,则返回空字符串。如果正则表达式中不包含子模式,它将获取与整个正则表达式匹配的子串。否则,它将获取与第一个子模式匹配的子串。
SELECT
extractAll('hellogoodaimantIdeaIDEAfasd123232', '[0-9]'),
extractAll('12323dSDFRE', '[A-Z]'),
extract('helloclickhouse', '[a-z]')
Row 1:
──────
extractAll('hellogoodaimantIdeaIDEAfasd123232', '[0-9]'): ['1','2','3','2','3','2']
extractAll('12323dSDFRE', '[A-Z]'): ['S','D','F','R','E']
extract('helloclickhouse', '[a-z]'): h
-- ngramSearch(haystack, needle)
-- 基于4-gram计算haystack和needle之间的距离:计算两个4-gram集合之间的对称差异,并用它们的基数和对其进行归一化。
-- 返回0到1之间的任何浮点数 -- 越接近0则表示越多的字符串彼此相似。
-- 如果常量的needle或haystack超过32KB,函数将抛出异常。如果非常量的haystack或needle字符串超过32Kb,则距离始终为1。
SELECT
ngramDistance('hello123456789', '123') AS ngramDistance,
ngramDistanceCaseInsensitive('hello123456789', '123') AS ngramDistanceCaseInsensitive,
ngramDistanceUTF8('hello123456789', '123') AS ngramDistanceUTF8,
ngramDistanceCaseInsensitiveUTF8('hello123456789', '123') AS ngramDistanceCaseInsensitiveUTF8
┌─ngramDistance─┬─ngramDistanceCaseInsensitive─┬─ngramDistanceUTF8─┬─ngramDistanceCaseInsensitiveUTF8─┐
│ 1 │ 1 │ 0.84615386 │ 0.84615386 │
└───────────────┴──────────────────────────────┴───────────────────┴──────────────────────────────────┘
-- 注意:对于UTF-8,我们使用3-gram。所有这些都不是完全公平的n-gram距离。
-- 我们使用2字节哈希来散列n-gram,然后计算这些哈希表之间的(非)对称差异 - 可能会发生冲突。
-- 对于UTF-8不区分大小写的格式,我们不使用公平的tolower函数
-- 我们将每个Unicode字符字节的第5位(从零开始)和字节的第一位归零
-- 这适用于拉丁语,主要用于所有西里尔字母。
复制
8.数学函数
SELECT
1 * e() AS E,
1 * pi() AS PI,
sqrt(25) AS sqrt_25, --接受一个数值类型的参数并返回它的平方根。
cbrt(27) AS cbrt_27, --接受一个数值类型的参数并返回它的立方根。
exp(10), --接受一个数值类型的参数并返回它的指数
exp10(10), --接受一个数值类型的参数并返回它的10的x次幂。
log(10) AS LOG,
log2(10) AS LOG2, --接受一个数值类型的参数并返回它的底2对数。
ln(e()) AS LOG10; --接受一个数值类型的参数并返回它的自然对数
SELECT
1 * e() AS E,
1 * pi() AS PI,
sqrt(25) AS sqrt_25,
cbrt(27) AS cbrt_27,
exp(10),
exp10(10),
log(10) AS LOG,
log2(10) AS LOG2,
ln(e()) AS LOG10
Row 1:
──────
E: 2.718281828459045
PI: 3.141592653589793
sqrt_25: 5
cbrt_27: 3.0000000000000004
exp(10): 22026.46579482316
exp10(10): 10000000000
LOG: 2.3025850938475476
LOG2: 3.321928094887362
LOG10: 0.9999999987491066
-- 示例:三西格玛准则
SELECT erf(3 sqrt(2)); -- 0.997
SELECT
sin(90), -- 返回x的三角正弦值。
cos(90), -- 返回x的三角余弦值。
tan(90), -- 返回x的三角正切值
acos(0), -- 返回x的反三角余弦值。
asin(1), -- 返回x的反三角正弦值。
atan(45); -- 返回x的反三角正切值。
SELECT
sin(90),
cos(90),
tan(90),
acos(0),
asin(1),
atan(45)
┌────────────sin(90)─┬─────────────cos(90)─┬────────────tan(90)─┬────────────acos(0)─┬────────────asin(1)─┬───────────atan(45)─┐
│ 0.8939966636005579 │ -0.4480736161291701 │ -1.995200412208242 │ 1.5707963267948966 │ 1.5707963267948966 │ 1.5485777614681775 │
└────────────────────┴─────────────────────┴────────────────────┴────────────────────┴────────────────────┴────────────────────┘
-- pow(x, y), power(x, y) 接受x和y两个参数。返回x的y次方。
SELECT
pow(2, 3), -- 2的三次方
pow(3, 2); -- 3的平方
SELECT
pow(2, 3),
pow(3, 2)
┌─pow(2, 3)─┬─pow(3, 2)─┐
│ 8 │ 9 │
└───────────┴───────────┘
SELECT
intExp2(4), --2^4 接受一个数值类型的参数并返回它的2的x次幂(UInt64)。
intExp10(2);--10^2 接受一个数值类型的参数并返回它的10的x次幂(UInt64)。
SELECT
intExp2(4),
intExp10(2)
┌─intExp2(4)─┬─intExp10(2)─┐
│ 16 │ 100 │
└────────────┴─────────────┘
复制
9.取整函数
-- 1.向下取整:floor(x[,N])
SELECT
floor(toFloat32(12.08098), 2),
floor(toFloat32(12.2323), 2),
floor(toFloat32(12.89788), -1),
floor(toFloat32(12.0959), 3),
floor(toFloat32(12.0987), 3),
floor(10, 2)\G
Row 1:
──────
floor(toFloat32(12.08098), 2): 12.08
floor(toFloat32(12.2323), 2): 12.23
floor(toFloat32(12.89788), -1): 10
floor(toFloat32(12.0959), 3): 12.095
floor(toFloat32(12.0987), 3): 12.098
floor(10, 2): 10
-- 2.四舍五入:round(expression [, decimal_places])
-- 如果decimal_places=0,则取整数;
-- 如果>0,则将值舍入小数点右侧;
-- 如果<0,则将小数点左侧的值四舍五入。
SELECT
round(toFloat32(12.1234), 3),
round(toFloat32(12.0025), 3),
round(toFloat32(12.0025), 4),
round(toFloat32(12.0025002323), 100);
┌─round(toFloat32(12.1234), 3)─┬─round(toFloat32(12.0025), 3)─┬─round(toFloat32(12.0025), 4)─┬─round(toFloat32(12.0025002323), 100)─┐
│ 12.123 │ 12.002 │ 12.0025 │ 12.002501 │
└──────────────────────────────┴──────────────────────────────┴──────────────────────────────┴──────────────────────────────────────┘
--示例:
SELECT
round(toFloat32(10 3)),
round(toFloat32(10 3), 2),
round(toFloat32(10. 3), 3),
round(toFloat32(10. 3), 6)
Row 1:
──────
round(toFloat32(divide(10, 3))): 3
round(toFloat32(divide(10, 3)), 2): 3.33
round(toFloat32(divide(10., 3)), 3): 3.333
round(toFloat32(divide(10., 3)), 6): 3.333333
--roundToExp2() 接受一个数字。如果数字小于1,则返回0。否则,它将数字向下舍入到最接近的(整个非负)2的x次幂。
SELECT
roundToExp2(12.0129),
roundToExp2(toFloat32(0.01));
┌─roundToExp2(12.0129)─┬─roundToExp2(toFloat32(0.01))─┐
│ 8 │ 0.0078125 │
└──────────────────────┴──────────────────────────────┘
--3.向上取整:ceil(x[, N]) 或者 ceiling(x[, N])
SELECT
ceil(12.34343, 3),
ceil(toFloat64(12.34343), 3),
ceil(toFloat32(12.34343), 3),
ceil(12.0011, 3);
┌─ceil(12.34343, 3)─┬─ceil(toFloat64(12.34343), 3)─┬─ceil(toFloat32(12.34343), 3)─┬─ceil(12.0011, 3)─┐
│ 12.344 │ 12.344 │ 12.344 │ 12.002 │
└───────────────────┴──────────────────────────────┴──────────────────────────────┴──────────────────┘
复制
10.随机函数
>>>>>> 随机函数
-- 解释:随机函数使用非加密方式生成【伪随机】数字。
-- ① 所有随机函数都只接受一个参数或不接受任何参数。
-- ② 您可以向它传递任何类型的参数,但传递的参数将不会使用在任何随机数生成过程中。
-- ③ 此参数的唯一目的是防止公共子表达式消除,以便在相同的查询中使用相同的随机函数生成不同的随机数
-- rand() 函数:返回一个UInt32类型的随机数字,所有UInt32类型的数字被生成的概率均相等。
-- rand64() 函数:返回一个UInt64类型的随机数字,所有UInt64类型的数字被生成的概率均相等。
-- randConstant() 函数:返回一个UInt32类型的随机数字,该函数不同之处在于仅为每个数据块参数一个随机数。
SELECT
rand(),
rand(10),
rand64(),
rand64(10),
randConstant(),
randConstant();
┌─────rand()─┬──rand(10)─┬─────────────rand64()─┬───────────rand64(10)─┬─randConstant()─┬─randConstant()─┐
│ 2049392190 │ 540304723 │ 13956764868050898212 │ 18408881627839072904 │ 3624250077 │ 3624250077 │
└────────────┴───────────┴──────────────────────┴──────────────────────┴────────────────┴────────────────┘
复制
文章转载自ClickHouse周边,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。
评论
相关阅读
数据库国产化替代深化:DBA的机遇与挑战
代晓磊
1207次阅读
2025-04-27 16:53:22
2025年4月国产数据库中标情况一览:4个千万元级项目,GaussDB与OceanBase大放异彩!
通讯员
689次阅读
2025-04-30 15:24:06
数据库,没有关税却有壁垒
多明戈教你玩狼人杀
587次阅读
2025-04-11 09:38:42
国产数据库需要扩大场景覆盖面才能在竞争中更有优势
白鳝的洞穴
569次阅读
2025-04-14 09:40:20
【活动】分享你的压箱底干货文档,三篇解锁进阶奖励!
墨天轮编辑部
493次阅读
2025-04-17 17:02:24
一页概览:Oracle GoldenGate
甲骨文云技术
469次阅读
2025-04-30 12:17:56
GoldenDB数据库v7.2焕新发布,助力全行业数据库平滑替代
GoldenDB分布式数据库
461次阅读
2025-04-30 12:17:50
优炫数据库成功入围新疆维吾尔自治区行政事业单位数据库2025年框架协议采购!
优炫软件
353次阅读
2025-04-18 10:01:22
国产数据库图谱又上新|82篇精选内容全览达梦数据库
墨天轮编辑部
267次阅读
2025-04-23 12:04:21
关于征集数据库标准体系更新意见和数据库标准化需求的通知
数据库标准工作组
239次阅读
2025-04-11 11:30:08