暂无图片
暂无图片
暂无图片
暂无图片
暂无图片

Phoenix二级索引的使用

Java菜鸟 2019-05-23
197

准备工作

  1. 创建测试表

     CREATE TABLE my_table ( 
    rowkey VARCHAR NOT NULL PRIMARY KEY,
    v1 VARCHAR,
    v2 VARCHAR,
    v3 VARCHAR
    );

    UPSERT INTO my_table values('1','value1','value2','value3');
    UPSERT INTO my_table values('2','value1','value2','value3');
    UPSERT INTO my_table values('3','value1','value2','value3');
    UPSERT INTO my_table values('4','value1','value2','value3');
    UPSERT INTO my_table values('5','value1','value2','value3');
    ...

    复制
  2. 开启索引支持

    HBase → 配置 → 高级 → 搜索 hbase-site.xml。
    在服务端添加下面配置:

     <property>
    <name>hbase.regionserver.wal.codec</name>
    <value>org.apache.hadoop.hbase.regionserver.wal.IndexedWALEditCodec</value>
    </property>

    复制

创建索引

  1. 全局索引

    全局索引适合读多写少的场景。如果使用全局索引,读数据基本不损耗性能,所有的性能损耗都来源于写数据。数据表的添加、删除和修改都会更新相关的索引表(数据删除了,索引表中的数据也会删除;数据增加了,索引表的数据也会增加)。

    注意:

    对于全局索引在默认情况下,在查询语句中检索的列如果不在索引表中,Phoenix不会使用索引表将,除非使用hint。

    创建全局索引

     CREATE INDEX my_index ON my_table ( v3 );

    复制

    查看效果

     0: jdbc:phoenix:> select v3 from my_table where v3 = '13000010030';
    +--------------+
    | V3 |
    +--------------+
    | 13000010030 |
    +--------------+
    1 row selected (2.155 seconds)
    0: jdbc:phoenix:> select * from my_table where v3 = '13000010030';
    +-------------------+------+--------+--------------+
    | ROWKEY | V1 | V2 | V3 |
    +-------------------+------+--------+--------------+
    | 77a9ede22e169683 | 麻保波 | 台湾屏东县 | 13000010030 |
    +-------------------+------+--------+--------------+
    1 row selected (2.337 seconds)
    0: jdbc:phoenix:> CREATE INDEX my_index ON my_table ( v3 );
    1,076,190 rows affected (33.875 seconds)
    0: jdbc:phoenix:> select * from my_table where v3 = '13000010030';
    +-------------------+------+--------+--------------+
    | ROWKEY | V1 | V2 | V3 |
    +-------------------+------+--------+--------------+
    | 77a9ede22e169683 | 麻保波 | 台湾屏东县 | 13000010030 |
    +-------------------+------+--------+--------------+
    1 row selected (3.296 seconds)
    0: jdbc:phoenix:> select v3 from my_table where v3 = '13000010030';
    +--------------+
    | V3 |
    +--------------+
    | 13000010030 |
    +--------------+
    1 row selected (0.02 seconds)

    复制
  2. 本地索引

    本地索引适合写多读少的场景,或者存储空间有限的场景。和全局索引一样,Phoenix也会在查询的时候自动选择是否使用本地索引。本地索引因为索引数据和原数据存储在同一台机器上,避免网络数据传输的开销,所以更适合写多的场景。由于无法提前确定数据在哪个Region上,所以在读数据的时候,需要检查每个Region上的数据从而带来一些性能损耗。

    注意:

    对于本地索引,查询中无论是否指定hint或者是查询的列是否都在索引表中,都会使用索引表。

    创建本地索引

     CREATE LOCAL INDEX LOCAL_IDEX ON my_table(v3);

    复制

    查看效果

     0: jdbc:phoenix:> select * from my_table where v3 = '13000010030';
    +-------------------+------+--------+--------------+
    | ROWKEY | V1 | V2 | V3 |
    +-------------------+------+--------+--------------+
    | 77a9ede22e169683 | 麻保波 | 台湾屏东县 | 13000010030 |
    +-------------------+------+--------+--------------+
    1 row selected (3.545 seconds)
    0: jdbc:phoenix:> select v3 from my_table where v3 = '13000010030';
    +--------------+
    | V3 |
    +--------------+
    | 13000010030 |
    +--------------+
    1 row selected (2.946 seconds)
    0: jdbc:phoenix:> CREATE LOCAL INDEX LOCAL_IDEX ON my_table(v3);
    1,076,190 rows affected (24.67 seconds)
    0: jdbc:phoenix:> select * from my_table where v3 = '13000010030';
    +-------------------+------+--------+--------------+
    | ROWKEY | V1 | V2 | V3 |
    +-------------------+------+--------+--------------+
    | 77a9ede22e169683 | 麻保波 | 台湾屏东县 | 13000010030 |
    +-------------------+------+--------+--------------+
    1 row selected (0.055 seconds)
    0: jdbc:phoenix:> select v3 from my_table where v3 = '13000010030';
    +--------------+
    | V3 |
    +--------------+
    | 13000010030 |
    +--------------+
    1 row selected (0.013 seconds)

    复制
  3. 覆盖索引

    覆盖索引是把原数据存储在索引数据表中,这样在查询时不需要再去HBase的原表获取数据就,直接返回查询结果。

    注意:

    查询是 select 的列和 where 的列都需要在索引中出现。

    创建覆盖索引

     CREATE INDEX my_index ON my_table ( v2,v3 ) INCLUDE ( v1 );

    复制

    添加索引后提升到毫秒级

     0: jdbc:phoenix:> select * from my_table where v3 = '13308117837' and v2 = '北京顺义';
    +-------------------+-----+-------+--------------+
    | ROWKEY | V1 | V2 | V3 |
    +-------------------+-----+-------+--------------+
    | 3f65283ed7553909 | 齐晨 | 北京顺义 | 13308117837 |
    +-------------------+-----+-------+--------------+
    1 row selected (2.42 seconds)
    0: jdbc:phoenix:> CREATE INDEX my_index ON my_table (v2,v3) INCLUDE ( v1 );
    1,076,190 rows affected (47.432 seconds)
    0: jdbc:phoenix:> select * from my_table where v3 = '13308117837' and v2 = '北京顺义';
    +-------------------+-----+-------+--------------+
    | ROWKEY | V1 | V2 | V3 |
    +-------------------+-----+-------+--------------+
    | 3f65283ed7553909 | 齐晨 | 北京顺义 | 13308117837 |
    +-------------------+-----+-------+--------------+
    1 row selected (0.031 seconds)

    复制
  4. 函数索引

    从Phoenix4.3版本就有函数索引,特点是索引的内容不局限于列,能根据表达式创建索引。适用于对查询表时过滤条件是表达式。如果你使用的表达式正好就是索引的话,数据也可以直接从这个索引获取,而不需要从数据库获取。

    创建索引

     CREATE INDEX my_index ON my_table(substr(v3,1,9)) INCLUDE ( v1 );

    复制

    查看效果

     0: jdbc:phoenix:> select v1,substr(v3,1,9) from my_table where substr(v3,1,9) = '130000109';
    +-----+-------------------+
    | V1 | SUBSTR(V3, 1, 9) |
    +-----+-------------------+
    | 凤伊 | 130000109 |
    +-----+-------------------+
    1 row selected (3.656 seconds)
    0: jdbc:phoenix:> select v1,v3 from my_table where substr(v3,1,9) = '130000109';
    +-----+--------------+
    | V1 | V3 |
    +-----+--------------+
    | 凤伊 | 13000010979 |
    +-----+--------------+
    1 row selected (3.969 seconds)
    0: jdbc:phoenix:> CREATE INDEX my_index ON my_table(substr(v3,1,9)) INCLUDE ( v1 );
    1,076,190 rows affected (45.833 seconds)

    0: jdbc:phoenix:> select v1,v3 from my_table where substr(v3,1,9) = '130000109';
    +-----+--------------+
    | V1 | V3 |
    +-----+--------------+
    | 凤伊 | 13000010979 |
    +-----+--------------+
    1 row selected (3.44 seconds)
    0: jdbc:phoenix:> select v1,v3,substr(v3,1,9) from my_table where substr(v3,1,9) = '130000109';
    +-----+--------------+-------------------+
    | V1 | V3 | SUBSTR(V3, 1, 9) |
    +-----+--------------+-------------------+
    | 凤伊 | 13000010979 | 130000109 |
    +-----+--------------+-------------------+
    1 row selected (3.327 seconds)
    0: jdbc:phoenix:> select v1,substr(v3,1,9) from my_table where substr(v3,1,9) = '130000109';
    +-----+--------------------+
    | V1 | " SUBSTR(V3,1,9)" |
    +-----+--------------------+
    | 凤伊 | 130000109 |
    +-----+--------------------+
    1 row selected (0.013 seconds)
    0: jdbc:phoenix:> select v1 from my_table where substr(v3,1,9) = '130000109';
    +-----+
    | V1 |
    +-----+
    | 凤伊 |
    +-----+
    1 row selected (0.011 seconds)

    复制

索引Building

  1. 同步索引

     CREATE INDEX ASYNC_IDX ON SCHEMA_NAME.TABLE_NAME(BASICINFO."s1",BASICINFO."s2") ;

    复制

    创建同步索引超时怎么办?

    在客户端配置文件hbase-site.xml中,把超时参数设置大一些,足够 Build 索引数据的时间。

     <property>
    <name>hbase.rpc.timeout</name>
    <value>60000000</value>
    </property>
    <property>
    <name>hbase.client.scanner.timeout.period</name>
    <value>60000000</value>
    </property>
    <property>
    <name>phoenix.query.timeoutMs</name>
    <value>60000000</value>
    </property>

    复制
    1. 创建异步索引

      CREATE INDEX ASYNC_IDX ON SCHEMA_NAME.TABLE_NAME ( BASICINFO."s1", BASICINFO."s2" ) ASYNC;

      复制
    2. 运行MapReduce

      执行MapReduce

      hbase org.apache.phoenix.mapreduce.index.IndexTool \
      --schema SCHEMA_NAME\
      --data-table TABLE_NAME\
      --index-table ASYNC_IDX \
      --output-path ASYNC_IDX_HFILES

      复制
      Java HotSpot(TM) 64-Bit Server VM warning: Using incremental CMS is deprecated and will likely be removed in a future release
      SLF4J: Class path contains multiple SLF4J bindings.
      SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-5.12.1-1.cdh5.12.1.p0.3/jars/phoenix-4.14.0-cdh5.12.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
      SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-5.12.1-1.cdh5.12.1.p0.3/jars/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
      SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
      SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
      19/05/22 15:38:41 INFO log.QueryLoggerDisruptor: Starting QueryLoggerDisruptor for with ringbufferSize=8192, waitStrategy=BlockingWaitStrategy, exceptionHandler=org.apache.phoenix.log.QueryLoggerDefaultExceptionHandler@dd0c991...
      19/05/22 15:38:41 INFO query.ConnectionQueryServicesImpl: An instance of ConnectionQueryServices was created.

      ...

      19/05/22 15:41:19 INFO index.IndexTool: Loading HFiles from INDEX_PERSONAS_TAG_HFILES/MY_SCHEMA.INDEX_PERSONAS_TAG
      19/05/22 15:41:19 WARN mapreduce.LoadIncrementalHFiles: Skipping non-directory hdfs://bigdata-dev-41:8020/user/root/INDEX_PERSONAS_TAG_HFILES/MY_SCHEMA.INDEX_PERSONAS_TAG/_SUCCESS
      19/05/22 15:41:19 INFO hfile.CacheConfig: CacheConfig:disabled
      19/05/22 15:41:19 INFO mapreduce.LoadIncrementalHFiles: Trying to load hfile=hdfs://bigdata-dev-41:8020/user/root/INDEX_PERSONAS_TAG_HFILES/MY_SCHEMA.INDEX_PERSONAS_TAG/0/e1f766365b4f4c7cb6cfc6e0d18328b8 first=0\x0010\x00\xE4\xB8\x9A\xE4\xB8\xBB\x000\x000\x0010\x000\x00\xE6\xAD\xA3\xE5\xB8\xB8\xE4\xB8\x9A\xE4\xB8\xBB\x001001.99\x000\x001\x003\x00\xE8\x80\x81\xE5\xAE\xA2\xE6\x88\xB7\x00\xE6\x9C\xAA\xE7\x9F\xA5\x0042471415705946377 last=2\x009\x00\xE7\xA7\x9F\xE5\xAE\xA2\x002\x002\x009\x002\x00\xE9\x95\xBF\xE6\x9C\x9F\xE4\xB8\x8D\xE4\xBA\xA4\xE7\x89\xA9\xE4\xB8\x9A\xE7\xAE\xA1\xE7\x90\x86\xE8\xB4\xB9\x00988.56\x000\x001\x004\x00\xE6\x9C\xAA\xE7\x9F\xA5\x00\xE5\x9C\x9F\xE8\xB1\xAA\x0044ff3613003558171
      19/05/22 15:41:20 INFO index.IndexToolUtil: Updated the status of the index INDEX_PERSONAS_TAG to ACTIVE

      复制

      遇到问题

      Error: Could not find or load main class org.apache.phoenix.mapreduce.index.IndexTool

      复制

      解决办法

      将 phoenix-4.14.0-cdh5.12.2-client.jar 包复制到 hbase 的 lib 目录下

      [root@node00 ~]# cd opt/cloudera/parcels/
      [root@node00 parcels]# cd APACHE_PHOENIX/lib/phoenix
      [root@node00 phoenix]# cp phoenix-4.14.0-cdh5.12.2-client.jar opt/cloudera/parcels/CDH/jars/
      [root@node00 phoenix]# cd opt/cloudera/parcels/CDH/lib/hbase/lib/
      [root@node00 lib]# ln -s ../../../jars/phoenix-4.14.0-cdh5.12.2-client.jar phoenix-4.14.0-cdh5.12.2-client.jar

      复制
    1. 异步索引

      异步Build索引需要借助MapReduce,创建异步索引语法和同步索引相差一个关键字:ASYNC。

索引用法总结

Phoenix 的二级索引主要有两种,即全局索引
本地索引

全局索引适合读多写少的场景,如果使用全局索引,读数据基本不损耗性能,所有的性能损耗都来源于写数据。
本地索引适合写多读少的场景,或者存储空间有限的场景。

索引定义完之后,一般来说,Phoenix自己会判定使用哪个索引更加有效。
但是,
全局索引必须是查询语句中所有列都包含在全局索引中,它才会生效

索引为:

create index my_index on my_table (v3);

复制
select v1 from my_table where v3 = '13406157616';

复制

上面语句怎样才能使用索引呢?

有以下三种方法使它使用索引:

  1. 使用覆盖索引

     CREATE INDEX cover_index ON my_table(v3) INCLUDE (v1);

    复制

    查看效果

     0: jdbc:phoenix:> select v1 from my_table where v3 = '13406157616';
    +------+
    | V1 |
    +------+
    | 茹羽琦 |
    +------+
    1 row selected (0.01 seconds)

    复制
  2. 使用 Hint 强制索引

     SELECT *+ INDEX(my_table my_index) */ v1 FROM my_table WHERE v3 = '13406157616';

    复制

    查看效果

     0: jdbc:phoenix:> SELECT *+ INDEX(my_table my_index) */ v1 FROM my_table WHERE v3 = '13406157616';
    +------+
    | V1 |
    +------+
    | 茹羽琦 |
    +------+
    1 row selected (0.044 seconds)

    复制
  3. 使用本地索引

     CREATE LOCAL INDEX local_index on my_table (v3);

    复制

    查看效果

     0: jdbc:phoenix:> select v1 from my_table where v3 = '13406157616';
    +------+
    | V1 |
    +------+
    | 茹羽琦 |
    +------+
    1 row selected (0.025 seconds)

    复制


文章转载自Java菜鸟,如果涉嫌侵权,请发送邮件至:contact@modb.pro进行举报,并提供相关证据,一经查实,墨天轮将立刻删除相关内容。

评论